بهبود تاب آوری زیرساخت وابسته به شبکه الکتریکی با استفاده از مدل گراف هندسی در مواجهه با انواع حملات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشگاه جامع امام حسین (ع)، تهران، ایران

2 دانشجوی دکتری ، دانشگاه صنعتی شیراز، شیراز، ایران

3 کارشناسی ارشد دانشگاه جامع امام حسین (ع)، تهران، ایران

چکیده

امروزه اهمیت فعالیت مستمر زیرساخت‌های شهری بر کسی پوشیده نیست. عملکرد سیستم‌های زیرساخت غالباً در پیوستگی با یکدیگر صورت می‌پذیرد. یکی از مفاهیم مهمی که به طور جدی از وابستگی سیستم‌ها تأثیرپذیر است، مفهوم تاب‌آوری در برابر رخدادهای شدید است. این مقاله به ارائه یک مدل جامع برای تاب‌آوری زیرساخت‌های حیاتی خصوصاً شبکه الکتریکی و زیرساخت‌های وابسته آن، در مواجهه با رخدادهای شدید و به طور دقیق‌تر خرابی ناشی از حملات می‌پردازد. در مدل ارائه شده، زیرساخت‌ها در قالب سه حیطه فیزیکی، انسانی و سایبری در نظر گرفته‌شده‌اند، که هر کدام، بر اساس خدمات قابل ارائه‌ی آن‌ها تعریف می‌گردد. این مدل‌سازی بر اساس تعریف گراف هندسی انجام می‌گیرد. از آنجا که یکی از مهم‌ترین زیرساخت‌های وابسته به شبکه الکتریکی که یک بار حیاتی برای آن نیز محسوب می‌شود، شبکه ارتباطی یا مخابرات است، مدلِ ارائه شده با لحاظ سیستم مخابراتی مورد بحث قرار می‌گیرد. این مطالعه بر عملکرد چندزمانی (multi-time) و چندحوزه‌ای (multi-domain) زیرساخت تمرکز دارد، و حالت‌های دینامیکی سیستم قدرت را در نظر می‌گیرد. در انتها به منظور ارزیابی روش ارائه شده، یک مطالعه عددی ارائه شده که داده‌های شبکه نمونه با استفاده از نرم‌افزار MATLAB شبیه‌سازی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Resilience improvement of Power System dependent infrastructure using geometric graphs models encountering various attacks

نویسندگان [English]

  • Reza Ghaffarpour 1
  • farid moazzen 2
  • Saeid Zamanian 3
1 Assistant Professor Imam Hossein Comprehensive University, Tehran, Iran
2 PhD student, Shiraz University of Technology, Shiraz, Iran.
3 Master's degree at Imam Hossein Comprehensive University (AS), Tehran, Iran.
چکیده [English]

Nowadays, the stable operation of urban infrastructure is of a lot of importance. The operation of infrastructure systems is often dependent to each other. One of the important concepts that is seriously affected by the dependence of such systems is resilience aganist extreme events. This paper proposes a comprehensive model for the resilience of critical infrastructures, especially the electrical grid and its associated infrastructure, faced with the damage caused by different attacks. In this model, three aspects of infrastructure are addressed: physical, human and cyber, each of which is defined based on the services they can provide. This modeling is developed based on the definition of a geometric graph. Since one of the most important infrastructures related to the electrical network, which is also a vital load for it, is the communication network, the proposed model is discussed in terms of the telecommunication system. This study focuses on the multi-time and multi-domain performance of the infrastructure, and considers the dynamics of the power system. Finally, in order to evaluate the proposed method, a numerical study is presented in which the case study is simulated using MATLAB software.

کلیدواژه‌ها [English]

  • Resilience
  • Critical Infrastructure
  • Electric grid
  • Power System
  • geometric graph
  1.  Chen, H.; Bresler, F. S.; Bryson, M. E.; Seiler, K.; Monken, J. “Toward Bulk Power System Resilience: Approaches for Regional Transmission Operators”; IEEE Power Energy Mag. 2020, 18, 20–30.##
  2. Panteli, M.; Trakas, D. N.; Mancarella, P.; Hatziargyriou, N. D. “Power Systems Resilience Assessment: Hardening and Smart Operational Enhancement Strategies”; Proc. IEEE 2017, 105, 1202–1213.##
  3. Wang, L.; Qi, J.; Hu, B.; Xie, K. “A Coupled Interaction Model for Simulation and Mitigation of Interdependent Cascading Outages”; IEEE Trans. Power Syst. 2021, 36, 4331-4342.##
  4. Khazeiynasab, S. R.; Qi, J. “Resilience Analysis and Cascading Failure Modeling of Power Systems Under Extreme Temperatures”; J. Mod. Power Syst. Clean Energy 2020, 9, 1446-1457.##
  5.  Panteli, M.; Mancarella, P. “Influence of Extreme Weather and Climate Change on the Resilience of Power Systems: Impacts and Possible Mitigation Strategies”; Electr. Power Syst. Res. 2015, 127, 259–270.##
  6.  Panteli, M.; Mancarella, P.; Trakas, D. N.; Kyriakides, E.; Hatziargyriou, N. D. “Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems”; IEEE Trans. Power Syst. 2017, 32, 4732-4742.##
  7.  Gholami, A.; Aminifar, F.; Shahidehpour, M. “Front Lines Against the Darkness: Enhancing the Resilience of the Electricity Grid Through Microgrid Facilities”; IEEE Electrif. Mag. 2016, 4, 18-24.##
  8.  Beatley, T.; Newman, P. “Biophilic Cities Are Sustainable, Resilient Cities”; Sustainability 2013, 5, 3328-3345.##
  9.  Li, Z.; Shahidehpour, M.; Aminifar, F.; Alabdulwahab, A.; Al-Turki, Y. “Networked Microgrids for Enhancing The Power System Resilience”; Proc. IEEE 2017, 105, 1289-1310.##
  10. Panteli, M.; Mancarella, P. “The Grid: Stronger, Bigger, Smarter?: Presenting A Conceptual Framework of Power System Resilience”; IEEE Power Energy Mag. 2015, 13, 58-66.##
  11. Ganin, A. A.; Massaro, E.; Gutfraind, A.; Steen, N.; Keisler, J. M.; Kott, A.; Mangoubi, R.; Linkov, I. “Operational Resilience: Concepts, Design and Analysis”; Sci. Rep. 2016, 6, 1-12.##
  12. Ouyang, M.; Dueñas-Osorio, L.; Min, X. “A Three-Stage Resilience Analysis Framework for Urban Infrastructure Systems”; Struct. Saf. 2012, 36, 23-31.##
  13. Butler, D.; Farmani, R.; Fu, G.; Ward, S.; Diao, K.; Astaraie-Imani, M. “A New Approach to Urban Water Management: Safe and Sure”; Procedia Eng. 2014, 89, 347–354.##
  14. Linkov, I.; Trump, B. D.; “The Science and Practice of Resilience”; Springer 2019.##
  15. Linkov, I.; Fox‐Lent, C.; Read, L.; Allen, C.R.; Arnott, J.C.; Bellini, E.; Coaffee, J.; Florin, M.V.; Hatfield, K.; Hyde, I.; Hynes, W. “Tiered Approach to Resilience Assessment”; Risk Anal. 2018, 38, 1772–1780.##
  16. Smith, H.; Ugarelli, R.; Van Der Zouwen, M.; Allen, R.; Gormley, A. M.; Segrave, A. “Risk, Vulnerability, Resilience and Adaptive Management in the Water Sector”; Transitions to the Urban Water Services of tomorrow, 2013.##
  17. Mohebbi, S.; Zhang, Q.; Wells, E.C.; Zhao, T.; Nguyen, H.; Li, M.; Abdel-Mottaleb, N.; Uddin, S.; Lu, Q.; Wakhungu, M.; Wu, Z. “Cyber-Physical-Social Interdependencies And Organizational Resilience: A Review of Water, Transportation, and Cyber Infrastructure Systems and Processes”; Sustain. Cities Soc. 2020, 102327.##
  18. Ouyang, M.; Wang, Z. “Resilience Assessment of Interdependent Infrastructure Systems: With a Focus on Joint Restoration Modeling and Analysis”; Reliab. Eng. Syst. Saf. 2015, 141, 74–82.##
  19. Johansen, C.; Tien, I. “Probabilistic Multi-Scale Modeling of Interdependencies Between Critical Infrastructure Systems for Resilience”; Sustain. Resilient Infrastruct. 2018, 3, 1–15.##
  20. Ouyang, M.; “Review on Modeling and Simulation of Interdependent Critical Infrastructure Systems”; Reliab. Eng. Syst. Saf. 2014, 121, 43–60.##
  21. Kitsak, M.; Ganin, A.A.; Eisenberg, D.A.; Krapivsky, P.L.; Krioukov, D.; Alderson, D.L.; Linkov, I. “Stability of a Giant Connected Component in a Complex Network”; Phys. Rev. E 2018, 97, 12309.##
  22. Dueñas‐Osorio, L.; Craig, J. I.; Goodno, B. J. “Seismic Response of Critical Interdependent Networks”; Earthq. Eng. Struct. Dyn. 2007, 36, 285–306.##
  23. Korkali, M.; Veneman, J. G.; Tivnan, B. F.; Bagrow, J. P.; Hines, P. D. H. “Reducing Cascading Failure Risk by Increasing Infrastructure Network Interdependence”; Sci. Rep. 2017, 7, 1–13.##
  24. Tien, I.; Der Kiureghian, A. “Compression And Inference Algorithms for Bayesian Network Modeling of Infrastructure Systems”; Proc. 12th on Applications of Statistics and Probability in Civil Engineering 2015.##
  25. Tien, I.; Der Kiureghian, A. “Algorithms for Bayesian Network Modeling and Reliability Assessment of Infrastructure Systems”; Reliab. Eng. Syst. Saf. 2016, 156, 134–147.##
  26. Bobbio, A.; Portinale, L.; Minichino, M.; Ciancamerla, E. “Improving the Analysis of Dependable Systems by Mapping Fault Trees Into Bayesian Networks”; Reliab. Eng. Syst. Saf. 2001, 71, 249–260.##
  27. Kim, M. C. “Reliability Block Diagram With General Gates and Its Application to System Reliability Analysis”; Ann. Nucl. Energy 2011, 38, 2456–2461.##
  28. Tien, I.; Der Kiureghian, A. “Compression Algorithm for Bayesian Network Modeling of Binary Systems”; Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures. CRC Press New York 2013, 3075–3081.##
  29. Bensi, M.; Der Kiureghian, A.; Straub, D. “Efficient Bayesian Network Modeling of Systems”; Reliab. Eng. Syst. Saf. 2013, 112, 200–213.##
  30. Mahadevan, S.; Zhang, R.; Smith, N. “Bayesian Networks for System Reliability Reassessment”; Struct. Saf. 2001, 23, 231–251.##
  31. Hosseini, S.; Barker, K. “Modeling Infrastructure Resilience Using Bayesian Networks: A Case Study of Inland Waterway Ports”; Comput. Ind. Eng. 2016, 93, 252–266.##
  32. Ganin, A. A.; Kitsak, M.; Marchese, D.; Keisler, J. M.; Seager, T.; Linkov, I.; “Resilience and Efficiency in Transportation Networks”; Sci. Adv. 2017, 3, E1701079.##
  33. Henry, D.; Ramirez-Marquez, J. E. “Generic Metrics and Quantitative Approaches for System Resilience as a Function of Time”; Reliab. Eng. Syst. Saf. 2012, 99, 114–122.##
  34. Vugrin, E. D.; Turnquist, M. A.; Brown, N. J. K. “Optimal Recovery Sequencing for Enhanced Resilience and Service Restoration in Transportation Networks”; Int. J. Crit. Infrastructures 2014, 10, 218–246.##
  35. Darayi, M.; Barker, K.; Santos, J. R. “Component Importance Measures for Multi-Industry Vulnerability of a Freight Transportation Network”; Networks Spat. Econ. 2017, 17, 1111–1136.##
  36. Reed, D. A.; Kapur, K. C.; Christie, R. D. “Methodology for Assessing the Resilience of Networked Infrastructure”; IEEE Syst. J. 2009, 3, 174–180.##
  37. Bartos, M.; Chester, M.; Johnson, N.; Gorman, B.; Eisenberg, D.; Linkov, I.; Bates, M. “Impacts of Rising Air Temperatures on Electric Transmission Ampacity and Peak Electricity Load in the United States”; Environ. Res. Lett. 2016, 11, 114008.##
  38. Bristow, D. N.; Bristow, M. “Recovery Planning for Resilience in Integrated Disaster Risk Management”; IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC) 2017, 2643–2648.##
  39. Bristow, D. N.; Hay, A. H. “Graph Model for Probabilistic Resilience and Recovery Planning of Multi-Infrastructure Systems”; J. Infrastruct. Syst. 2017, 23, 4016039.##
  40. Seppänen, H.; Luokkala, P.; Zhang, Z.; Torkki, P.; Virrantaus, K. “Critical Infrastructure Vulnerability—A Method for Identifying the Infrastructure Service Failure Interdependencies”; Int. J. Crit. Infrastruct. Prot. 2018, 22, 25–38.##
  41. Oh, E. H.; Deshmukh, A.; Hastak, M. “Criticality Assessment of Lifeline Infrastructure for Enhancing Disaster Response”; Nat. Hazards Rev. 2013, 14, 98–107.##
  42. Banerjee, J.; Das, A.; Sen, A. “A Survey of Interdependency Models for Critical Infrastructure Networks”; Arxiv Prepr. Arxiv1702.05407 2017.##
  43. Berezin, Y.; Bashan, A.; Danziger, M. M.; Li, D.; Havlin, S. “Localized Attacks on Spatially Embedded Networks With Dependencies”; Sci. Rep. 2015, 5, 1–5.##
  44. Zhao, J.; Li, D.; Sanhedrai, H.; Cohen, R.; Havlin, S. “Spatio-Temporal Propagation of Cascading Overload Failures in Spatially Embedded Networks”; Nat. Commun. 2016, 7, 1–6.##
  45. Zio, E.; Sansavini, G. “Modeling Interdependent Network Systems for Identifying Cascade-Safe Operating Margins”; IEEE Trans. Reliab. 2011, 60, 94–101.##
  46. Panzieri, S.; Setola, R. “Failures Propagation in Critical Interdependent Infrastructures”; Int. J. Model. Identif. Control 2008, 3, 69–78.##
  47. Duenas-Osorio, L.; Vemuru, S. M. “Cascading Failures in Complex Infrastructure Systems”; Struct. Saf. 2009, 31, 157–167.##
  48. Vespignani, A. “The Fragility of Interdependency”; Nature 2010, 464, 984–985.##
  49. Havlin, S.; Araújo, N. A. M.; Buldyrev, S. V.; Dias, C. S.; Parshani, R.; Paul, G.; Stanley, H. E. “Catastrophic Cascade of Failures in Interdependent Networks”; In Complex Materials in Physics and Biology 2012, IOS Press, 311–324.##
  50. Ghaffarpour, R.; Moazzen, F.; Zamaniyan, S. “A Survey of Modeling Approaches of Interdependent Infrastructures Form Resilience Viewpoint”; Adv. Defence Sci. & Technol 2019, 3, 325–334 (In Persian).##
  51. Liu, C. C. “Distribution Systems: Reliable but not Resilient?[In My View]”; IEEE Power Energy Mag. 2015, 13, 93–96.##
  52. Wang, Y.; Chen, C.; Wang, J.; Baldick, R. “Research on Resilience of Power Systems Under Natural Disasters—A Review”; IEEE Trans. Power Syst. 2015, 31, 1604–1613.##
  53. Gholami, A.; Shekari, T.; Aminifar, F.; Shahidehpour, M. “Microgrid Scheduling With Uncertainty: The Quest for Resilience”; IEEE Trans. Smart Grid 2016, 7, 2849–2858.##
  54. Gholami, A.; Shekari, T.; Amirioun, M. H.; Aminifar, F.; Amini, M. H.; Sargolzaei, A. “Toward a Consensus on the Definition and Taxonomy of Power System Resilience”; IEEE Access 2018, 6, 32035–32053.##
  55. Glasstone S.; Dolan, P. J. “The Effects of Nuclear Weapons”; US Department of Defense 1977, 50, 3.##
  56. Fletcher, E. R.; Albright, R. W.; Perret, R. F.; Franklin, M. E.; Bowen, I.G.“Nuclear Bomb Effects Computer(Including Slide-Rule Design and Curve Fits for Weapons      Effects)”; Civil Effects Test Operations (Aec) Washington Dc 1963.##
  57. Krishnamurthy, V.; Kwasinski, A. “Characterization of Power System Outages Caused by Hurricanes Through Localized Intensity Indices”; IEEE Power & Energy Society General Meeting 2013, 1–5.##
  58. Liu, X.; Chen, B.; Chen, C.; Jin, D. “Electric Power Grid Resilience with Interdependencies between Power and Communication Networks–A Review”; IET Smart Grid 2020, 3, 182-193.##
  59. Kwasinski, A. “Quantitative Model and Metrics of Electrical Grids’ Resilience Evaluated at a Power Distribution Level”; Energies 2016, 9, 93.##
  60. Yodo, N.; Wang, P.; Rafi, M. “Enabling Resilience of Complex Engineered Systems Using Control Theory”; IEEE Trans. Reliab. 2017, 67, 53–65.##
  61. Hur, J., Joung, M. H.; Baldick, R. “Sequential Outage Checkers for Analyzing Cascading Outages and Preventing Large Blackouts”; Electr. Eng. Technol. J. 2011, 6, 585–594.##
  62. Wang, Y.; Baldick, R. “Case Study of an Improved Cascading Outage Analysis Model Using Outage Checkers”; IEEE Power & Energy Society General Meeting 2013, 1–5.##
  63. Huang, B.; Majidi, M.; Baldick, R. “Case Study of Power System Cyber Attack Using Cascading Outage Analysis Model”; IEEE Power & Energy Society General Meeting (PESGM) 2018, 1–5.##
  64. Kundur, P.; Paserba, J.; Ajjarapu, V.; Andersson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N.; Hill, D.; Stankovic, A.; Taylor, C.; Van Cutsem, T. “Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions”; IEEE Trans. Power Syst. 2004, 19, 1387–1401.##
  65. Siemens, A. G. “SIPROTEC 5 Distance Protection and Line Differential Protection and Overcurrent Protection for 3-Pole Tripping 7SA84, 7SD84, 7SA86, 7SD86, 7SL86, 7SJ86 Technical Data”; 2012.##
  66. Krishnamurthy, V.; Kwasinski, A. “Modeling of Communication Systems Dependency on Electric Power During Nuclear Attacks”; IEEE Int. Telecom. Energy Conf. (INTELEC) 2016, 1–8.##