رویکردهای مدل‌سازی سیستم‌های زیرساخت دارای وابستگی متقابل از منظر تاب‌آوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 علوم و تحقیقات تهران

2 دانشگاه صنعتی شیراز

3 دانشگاه جامع امام حسین (ع)

چکیده

دردنیای امروزی، استمرار زندگی در جوامع بشری بدون فعالیت مستمر زیرساخت‌های حیاتی امکان‌پذیر نیست. از این رو نحوه بهره‌برداری و حفاظت از زیرساخت‌های حیاتی مورد توجه مطالعات بسیاری قرار گرفته است. یکی از زمینه‌های اصلی در مطالعات زیرساخت‌ها چگونگی مدل‌سازی سیستم‌ها به خصوص با وجود وابستگی‌های بین آن‌هاست. در این مقاله، مروری بر مطالعات اخیر در مورد چگونگی مدل‌سازی سیستم‌های زیرساخت دارای وابستگی متقابل انجام شده است. هدف این مطالعه شناسایی راهکارهای حفاظت بیشتر از سیستم‌ها در برابر اختلالات پیش‌آمده در یک سیستم و جلوگیری از انتشار آن به سیستم‌های دیگر است. یکی از مفاهیم مؤثر در مطالعه اثرات اختلال و قطعی‌های آبشاری، مفهوم تاب‌آوری سیستم است. بهبود تاب‌آوری که نزدیک‌ترین مفهوم به پدافند غیرعامل در حوزه زیرساخت است، می‌تواند درک صحیحی از احتمال استمرار فعالیت زیرساخت‌های وابسته ارائه نماید. بنابراین، در این مقالهی مروری، نحوه مدل‌سازی وابستگی در سیستم‌های زیرساخت با رویکرد تاب‌آوری سیستم در برابر تهدیدات بررسی شده است. در این راستا، انواع رویکردهای مدل‌سازی با دسته‌بندی به پنج گروه تجربی، عامل-محور، دینامیکی، اقتصادی و شبکه‌ای معرفی و بررسی شده‌اند. انتهای مقاله، چالش‌های پیش روی محققین برای انجام مطالعات بیشتر تصویر شده است. موارد ارائه شده می‌تواند راهگشای بسیاری از پیشرفت‌های آتی در زمینه مدل‌سازی زیرساخت‌های وابسته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A Survey of Modeling Approaches of Interdependent Infrastructures form the Resilience Viewpoint

نویسندگان [English]

  • farid moazzen 2
  • Saeid Zamanian 3
1
2 shiraz university of technology
3 ]mam Hosein Comprehensive University
چکیده [English]

Nowadays, the human life in societies has become impossible without reliable operation of critical infrastructures. Therefore, many studies have focused on their operation and protection. One of the main fields in infrastructural studies is system modeling, especially with regard to interdependency. In this paper, recent studies on the modeling of interdependent infrastructures are reviewed. The purpose is to further protect the systems against disruptive events and to prevent cascading disturbances. One of the most effective and practical concepts in evaluating the impacts of perturbation and cascading interruptions is the concept of system resilience. Resilience, also known in the defense literature as passive defense, can provide a precise understanding of the probability of interdependent infrastructures' functionality. Therefore, in this review paper, interdependency modeling in infrastructure systems is investigated through the approach of system resilience against threats and disruptive events. To this end, various modeling approaches, are categorized into empirical, agent-based, system dynamics, economic, and network-based approaches and studied. Finally, the challenges that the researchers may face in the future studies are pointed out. The description of present challenges can pave the way for significant future developments in the field of interdependent infrastructure system modeling.

کلیدواژه‌ها [English]

  • Infrastructure Systems
  • Interdependency
  • Modeling
  • Cascading Outages
  • Resilience
  1. Foundations, C. “Protecting America’s Infrastructures: The Report of the President’s Commission on Critical Infrastructure Protection”; Washington, DC: The President’s Commission on Critical Infrastructure Protection 1997.##
  2. Comfort, L. K. “Managing Critical Infrastructures in Crisis”; Oxford Research Encyclopedia of Politics 2020.##
  3. Rass, S.; Schauer, S.; König, S.; Zhu, Q. “Cyber-Security in Critical Infrastructures”; Springer 2020.##
  4. Amini, M. H.; Boroojeni, K. G.; Iyengar, S. S.; Blaabjerg, F.; Pardalos, P. M.; Madni, A. M.; “A Panorama of Future Interdependent Networks: From Intelligent Infrastructures to Smart Cities”; Sustainable Interdependent Networks, Springer 2018, 1–10.##
  5. Nakarmi, U. “Reliability Analysis of Power Grids and Its Interdependent Infrastructures: An Interaction Graph-based Approach”; 2020.##
  6. Ouyang, M. “Review on Modeling and Simulation of Interdependent Critical Infrastructure Systems”; Reliab. Eng. Syst. Saf. 2014, 121, 43-60.##
  7. Pederson, P.; Dudenhoeffer, D.; Hartley, S.; Permann, M. “Critical Infrastructure Interdependency Modeling: a Survey of US and International Research”; Idaho Natl. Lab. 2006, 25, 27.##
  8. Eusgeld, I.; Henzi, D.; Kröger, W. “Comparative Evaluation of Modeling and Simulation Techniques for Interdependent Critical Infrastructures”; Sci. Report, Lab. Saf. Anal. ETH Zurich 2008, 6-8.##
  9. Satumtira, G.; Dueñas-Osorio, L. “Synthesis of Modeling and Simulation Methods on Critical Infrastructure Interdependencies Research”; Sustainable and Resilient Critical Infrastructure Systems, Springer 2010, 1-51.##
  10. Pye, G.; Warren, M. “Conceptual Modelling: Choosing a Critical Infrastructure Modelling Methodology”; Proc. 7th Australian Information Warfare and Security Conference 2006, 103–113.##
  11. De-Porcellinis, S.; Panzieri, S.; Setola, R. “Modelling Critical Infrastructure Via a Mixed Holistic Reductionistic Approach”; Int. J. Crit. Infrastructures 2009, 5, 86–99.##
  12. Griot, C. “Modelling and Simulation for Critical Infrastructure Interdependency Assessment: a Meta-Review for Model Characterisation”; Int. J. Crit. Infrastructures 2010, 6, 363–379.##
  13. Bloomfield, R.; Chozos, N.; Nobles, P. “Infrastructure Interdependency Analysis: Requirements, Capabilities and Strategy”; Adelard Doc. Ref. d418/12101/3, 1, 2009.##
  14. Ghaffarpour, R.; Alizadeh, M. I. “Resiliency Concept Explanation In Electricity Network and Its Relationship With Passive Defense”; Shahr-e-Tabavar 2020, 2, 1, 51–64
    (In Persian).##
  15. Almoghathawi, Y.; Barker, K.; Albert, L. A. “Resilience-Driven Restoration Model for Interdependent Infrastructure Networks”; Reliab. Eng. Syst. Saf. 2019, 185, 12–23.##
  16. Bologna, S.; Setola, R. “The Need To Improve Local Self-Awareness In CIP/CIIP”; First IEEE International Workshop on Critical Infrastructure Protection (IWCIP’05) 2005, 6.##
  17. Briere, J. “Rapid Restoration of Critical Infrastructures: An All-Hazards Paradigm for Fusion Centres”; Int. J. Crit. Infrastructures 2011, 7, 21–36.##
  18. Rinaldi, S. M.; Peerenboom, J. P.; Kelly, T. K. “Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies”; IEEE Control Syst. Mag. 2001, 21,
    11–25.##
  19. Banerjee, J.; Das, A.; Sen, A. “A Survey of Interdependency Models for Critical Infrastructure Networks”; arXiv Prepr. arXiv1702.05407, 2017.##
  20. Cardoni, A.; Cimellaro G. P.; Domaneschi M.; Sordo S.; Mazza A. “Modeling the Interdependency Between Buildings and the Electrical Distribution System for Seismic Resilience Assessment”; Int. J. Disaster Risk Reduct 2020, 42, 101315.##
  21. Shengyu, W.; Peng W.; Jie Y.; Zhuonan L.; Min O. “Review On Interdependency Modeling of Integrated Energy System”; IEEE Conference on Energy Internet and Energy System Integration , 2017, 1-6.##
  22. Saidi, S.; Kattan, L.; Jayasinghe, P.; Hettiaratchi, P.; Taron, J.; “Integrated Infrastructure Systems, A Review”; Sustainable Cities and Society 2018, 36, 1-11.##
  23. Wang, J.; Zuo, W.; Rhode-Barbarigos, L.; Lu, X.; Wang, J.; Lin, Y. “Literature Review on Modeling and Simulation of Energy Infrastructures From a Resilience Perspective”; Reliab. Eng. Syst. Saf. 2019, 183, 360-373.##
  24. Ebrahimy R.; Pourmirza Z. “Cyber-Interdependency in Smart Energy Systems”; ICISSP 2017, 529–537.##
  25. Zimmerman, R.; “Social Implications of Infrastructure Network Interactions”; J. Urban Technol. 2001, 8, 97–119.##
  26. Lee, E. E.; Mitchell, J. E.; Wallace, W. A. “Restoration of Services in Interdependent Infrastructure Systems: A Network Flows Approach”; IEEE Trans. Syst. Man, Cybern. Part C Applications Rev. 2007, 37, 1303-1317.##
  27. Wallace, W. A.; Mendonça, D.; Lee, E.; Mitchell, J.; Chow, J.; “Managing Disruptions to Critical Interdependent Infrastructures in The Context of the 2001 World Trade Center Attack”; Impacts Hum. Response to Sept. 11, 2001 Disasters What Res. 2001.##
  28. Seppänen, H.; Luokkala, P.; Zhang, Z.; Torkki, P.; Virrantaus K. “Critical Infrastructure Vulnerability—A Method for Identifying the Infrastructure Service Failure Interdependencies”; Int. J. Crit. Infrastruct. Prot. 2018, 22, 25-38.##
  29. Mendonça, D.; Wallace, W. A. “Impacts of the 2001 World Trade Center Attack on New York City Critical Infrastructures”; J. Infrastruct. Syst. 2006, 12, 260-270.##
  30. Klotzbach, P. J.; Schreck, C. J.; Collins, J. M.; Bell, M., Blake, E. S.; Roache, D. “The Extremely Active 2017 North Atlantic Hurricane Season”; Mon. Weather Rev. 2018, 146, 3425-3443.##
  31. O’rourke, T. D.; Lembo, A. J.; Nozick, L. K. “Lessons learned from the World Trade Center disaster about critical utility systems”; Beyond Sept. 11th an Acc. Post-Disaster Res. Nat. Hazards Res. Appl. Inf. Center, Public Entity Risk Institute, Inst. Civ. Infrastruct. Syst. Univ. Color. Boulder 2003, 275.##
  32. Haes-Alhelou, H.; Hamedani-Golshan, M. E.; Njenda, T. C.; Siano P. “A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges”; Energies 2019, 12, 682.##
  33. Wen, R. Z.; Sun, B. T.; Zhou, B. F.; “Field Survey of Mw8. 8 Feb. 27, 2010 Chile Earthquake and Tsunami”; Adv. Mater. Res. 2011, 250, 2102-2106.##
  34. Zio, E.; Sansavini, G. “Modeling Interdependent Network Systems for Identifying Cascade-Safe Operating Margins”; IEEE Trans. Reliab. 2011, 60, 94-101.##
  35. Luiijf, E.; Nieuwenhuijs, A.; Klaver, M.; van-Eeten, M.; Cruz, E. “Empirical Findings on Critical Infrastructure Dependencies in Europe”; International Workshop on Critical Information Infrastructures Security 2008, 302-310.##
  36. Bigger, J. E.; Willingham, M. G.; Krimgold, F.; Mili, L. “Consequences of Critical Infrastructure Interdependencies: Lessons From the 2004 Hurricane Season in Florida”; Int. J. Crit. Infrastructures 2009, 199-219.##
  37. Chang, S. E.; McDaniels, T. L.; Mikawoz, J.; Peterson, K. “Infrastructure Failure Interdependencies in Extreme Events: Power Outage Consequences in the 1998 Ice Storm”; Nat. Hazards 2007, 41, 337-358.##
  38. Kjølle, G. H.; Utne, I. B.; Gjerde, O. “Risk Analysis of Critical Infrastructures Emphasizing Electricity Supply and Interdependencies”; Reliab. Eng. Syst. Saf. 2012, 105, 80-89.##
  39. Utne, I. B.; Hokstad, P.; Vatn, J. “A Method for Risk Modeling of Interdependencies in Critical Infrastructures”; Reliab. Eng. Syst. Saf. 2011, 96, 671-678.##
  40. Rong, M.; Han, C.; Liu, L. “Critical Infrastructure Failure Interdependencies in the 2008 Chinese Winter Storms”; Int. Conf. on Management and Service Science 2010, 1-4.##
  41. Kajitani, Y.; Sagai, S. “Modelling the Interdependencies of Critical Infrastructures during Natural Disasters: A Case of Supply, Communication and Transportation Infrastructures”; Int. J. Crit. infrastructures 2009, 5, 38-50.##
  42. Chang, S. E.; McDaniels, T.; Beaubien, C. “Societal Impacts of Infrastructure Failure Interdependencies: Building an Empirical Knowledge Base”; TCLEE: Lifeline Earthquake Engineering in a Multihazard Environment 2009, 1-10.##
  43. Dunn, S.; Wilkinson, S.; Alderson, D.; Fowler, H.; Galasso, C. “Fragility Curves for Assessing the Resilience of Electricity Networks Constructed from an Extensive Fault Database”; Nat. Hazards Rev. 2018, 19, 4017019.##
  44. Holland, J. H.; “Complex Adaptive Systems and Spontaneous Emergence”; Complexity and Industrial Clusters, Springer 2002, 25-34.##
  45. Schoenwald, D. A.; Barton, D. C.; Ehlen, M. A. “An Agent-based Simulation Laboratory for Economics and Infrastructure Interdependency”; Proc. American Control Conference 2004, 2, 1295-1300.##
  46. North, M. J. “Toward Strength and Stability: Agent-Based Modeling of Infrastructure Markets”; Soc. Sci. Comput. Rev. 2001, 19, 307-323.##
  47. Nipa, T. J.; Kermanshachi, S.; Ramaji, I. “Comparative Analysis of Strengths and Limitations of Infrastructure Resilience Measurement Methods”; 7th International Construction Specialty Conference 2019, 12-15.##
  48. Canzani, E. “Modeling Dynamics of Disruptive Events for Impact Analysis in Networked Critical Infrastructures”; ISCRAM 2016.##
  49. Duchin, F.; “Input-Output Economics and Material Flows”; Handbook of Input-Output Economics in Industrial Ecology, Springer 2009, 23-41.##
  50. Lin, J.; Tai, K.; Tiong, R. L. K.; Sim, M. S. “Analyzing Impact on Critical Infrastructure Using Input-Output Interdependency Model: Case Studies”; J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2017, 3, 4017016.##
  51. Crowther, K. G.; Haimes, Y. Y.; Taub, G. “Systemic Valuation of Strategic Preparedness Through Application of the Inoperability Input‐Output Model With Lessons Learned From Hurricane Katrina”; Int. J. Risk Anal. 2007, 27, 5, 1345-1364.##
  52. Nozick, L. K.; Turnquist, M. A.; Jones, D. A.; Davis, J. R.; Lawton, C. R. “Assessing the Performance of Interdependent Infrastructures and Optimising Investments”; Int. J. Crit. infrastructures 2005, 1, 144-154.##
  53. Delamare, S.; Diallo, A.; Chaudet, C. “High-Level Modelling of Critical Infrastructures’ Interdependencies”; Int. J. Crit. Infrastructures 2009, 5, 100-119.##
  54. Zlotnik, A.; Roald, L.; Backhaus, S.; Chertkov M.; Andersson G. “Coordinated Scheduling for Interdependent Electric Power and Natural Gas Infrastructures”; IEEE Trans. Power Syst. 2016, 32, 1, 600-610.##
  55. Gomand, O.; Antenucci, A.; Li, B.; Sansavini, G. “Modelling Interdependent Electric Power and Gas Networks in The Context Of Cascading Failures”; Saf. Reliab. Complex Eng. Syst. 2015, 4413-4421.##
  56. Kong, J.; Simonovic, S. P. “Probabilistic Multiple Hazard Resilience Model of an Interdependent Infrastructure System”; Risk Anal. 2019, 39, 1843-1863.##
  57. Balakrishnan, S.; Zhang, Z. “Modeling Interdependent Effects of Infrastructure Failures Using Imprecise Dependency Information”; Sustain. Resilient Infrastruct. 2020, 1-17.##
  58. Zhang, Y.; Yang, N.; Lall, U. “Modeling And Simulation of The Vulnerability of Interdependent Power-Water Infrastructure Networks to Cascading Failures”; J. Syst. Sci. Syst. Eng. 2016, 25, 102-118.##
  59. Agathokleous, A.; Xanthos, S.; Christodoulou, S. E. “Real-Time Monitoring of Water Distribution Networks”; Water Util. J. 2015, 10, 15-24.##
  60. Dueñas‐Osorio, L.; Craig, J. I.; Goodno, B. J. “Seismic Response of Critical Interdependent Networks”; Earthq. Eng. Struct. Dyn. 2007, 36, 285-306.##
  61. Hernandez-Fajardo, I.; Dueñas-Osorio, L. “Probabilistic Study of Cascading Failures in Complex Interdependent Lifeline Systems”; Reliab. Eng. Syst. Saf. 2013, 111,
    260-272.##
  62. Zhang, J.; Song, B.; Zhang, Z.; Liu, H. “An Approach for Modeling Vulnerability of the Network of Networks”; Phys. A Stat. Mech. its Appl. 2014, 412, 27–136.##
  63. Kurant, M.; Thiran, P.; Hagmann, P. “Error and Attack Tolerance of Layered Complex Networks”; Phys. Rev. E 2007, 76, 26103.##
  64. Nan, C.; Sansavini, G. “A Quantitative Method for Assessing Resilience of Interdependent Infrastructures”; Reliab. Eng. Syst. Saf. 2017, 157, 35-53.##
  65. Ghaffarpour, R.; Jalali, G. “Assessment of Interconnected Power System and Communication Network Using The Percolation Theory”; Adv. Defence Sci. & Technol 2019, 3,
    325-334 (In Persian).##
  66. Folga, S. M. “Natural Gas Pipeline Technology Overview”; Rep. 2007.##
  67. Kurz, R.; Lubomirsky, M.; Brun, K. “Gas Compressor Station Economic Optimization”; Int. J. Rotating Mach. 2012, 715017.##
  68. Mukherjee, I.; Gadoura, I. A. “Low-Thermal Noise Input-Filter Design for DC/DC Power Regulators”; IFAC Proc. 2011, 44, 12201-12206.##
  69. Erdener, B. C.; Pambour, K. A.; Lavin, R. B.; Dengiz, B. “An Integrated Simulation Model for Analysing Electricity and Gas Systems”; Int. J. Electr. Power Energy Syst. 2014, 61, 410-420.##
  70. Lee, S.; Bi, X. “Can Embedded Knowledge in Pollution Prevention Techniques Reduce Greenhouse Gas Emissions? A Case Of The Power Generating Industry in the United States”; Environ. Res. Lett. 2020, 15, 124033.
  71. Doyle, M.; Fell, H. “Fuel Prices, Restructuring, and Natural Gas Plant Operations”; Resour. Energy Econ. 2018, 52, 153-172.##
  72. Heracleous, C.; Kolios, P.; Panayiotou, C. G.; Ellinas, G.; Polycarpou, M. “Hybrid Systems Modeling for Critical Infrastructures Interdependency Analysis”; Reliab. Eng. Syst. Saf. 2017, 165, 89-101.##
  73. Vida, R.; Galeano, J.; Cuenda, S. “Vulnerability of State-Interdependent Networks Under Malware Spreading”; Phys. A Stat. Mech. its Appl. 2015, 421, 134-140.##
  74. Kong, J.; Zhang, C.; Simonovic, S. P. “Optimizing the Resilience of Interdependent Infrastructures to Regional Natural Hazards With Combined Improvement Measures”; Reliab. Eng. Syst. Saf. 2021, 107538.##
  75. Quevedo, J. “Validation and Reconstruction of Flow Meter Data in the Barcelona Water Distribution Network”; Control Eng. Pract. 2010, 18, 640-651.##
  76. Boulos, P. F.; Jacobsen, L. B.; Heath, J. E.; Kamojjala, S. “Real-Time Modeling of Water Distribution Systems: A Case Study”; J. Am. Water Work. Assoc. 2014, 106, 9, 391-401.##
  77. Hu, M.; Xiao, J. W.; Cui, S. C.; Wang, Y. “Distributed Real-Time Demand Response for Energy Management Scheduling in Smart Grid”; Int. J. Electr. Power Energy Syst. 2018, 99, 233-245.##
  78. Liu, Y.; Qu, Z.; Xin, H.; Gan, D. “Distributed Real-Time Optimal Power Flow Control in Smart Grid”; IEEE Trans. Power Syst. 2016, 32, 3403-3414.##
  79. Shamir U.; Salomons, E. “Optimal Real-Time Operation of Urban Water Distribution Systems Using Reduced Models”; J. Water Resour. Plan. Manag. 2008, 134, 181-185.##
  80. Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Verrilli, F. “Real-Time Control of A PRV in Water Distribution Networks For Pressure Regulation: Theoretical Framework and Laboratory Experiments”; J. Water Resour. Plan. Manag. 2018, 144, 4017075.##
  81. Cheng, W. P.; Yu, T. C.; Xu, G. “Real-Time Model of a Large-Scale Water Distribution System”; Procedia Eng. 2014, 89, 457-466.##
  82. Vassiljev, A.; Koor, M.; Koppel, T. “Real-Time Demands and Calibration of Water Distribution Systems”; Adv. Eng. Softw. 2015, 89, 108-113.##
  83. Tootaghaj, D. Z.; Bartolini, N.; Khamfroush, H.; He, T.; Chaudhuri, N. R.; La-Porta, T. “Mitigation and Recovery from Cascading Failures in Interdependent Networks Under Uncertainty”; IEEE Trans. Control Netw. Syst. 2018, 6, 501-514.##
  84. Nosratabadi, S.; Mosavi, A.; Keivani, R.; Ardabili, S.; Aram, F. “State of the Art Survey of Deep Learning and Machine Learning Models for Smart Cities and Urban Sustainability”; Int. Conf. Global Research and Education 2019, 228-238.##