ارزیابی شبکه به‌هم‌پیوسته سیستم قدرت و شبکه مخابراتی با استفاده از نظریه تراوش

نوع مقاله : قدرت- انتقال و توزیع

نویسندگان

1 استادیار دانشگاه جامع امام حسین (ع)

2 استادیار دانشگاه عالی دفاع ملی

چکیده

پیشرفت‌های اخیر در حوزه فناوری اطلاعات و ارتباطات، بهره‌برداران سیستم قدرت را بر آن داشت تا برای تداوم کارکرد عادی این زیرساخت حیاتی از شبکه مخابراتی مدد بجوید. اتصال شبکه مخابراتی به سیستم قدرت گرچه موجب تسهیل در بهره‌برداری از آن شد، ولی بااین‌حال، مسائلی را سبب شد که پیش‌تر متصور نبود. یکی از این مسائل سرایت یک آسیب از زیرساختی به زیرساخت دیگر است. گاه این آسیب تا آنجا پیش می‌رود که دیگر اتصالی میان زیرساخت‌ها باقی نمی‌ماند. در این مقاله، از نظریه تراوش برای یافتن آستانه انفصال زیرساخت‌های به‌هم‌پیوسته از یکدیگر استفاده شده است. دو زیرساخت حیاتی به‌صورت شبکه‌ای به‌هم‌پیوسته مدل شده و سپس به سه گراف مجزا تفکیک شده است. با استفاده از ماتریس‌های مجاورت این سه گراف و بدون شبیه‌سازی واقعی هیچ فرآیند تراوشی، دیاگرام تغییر فاز شبکه به‌هم‌پیوسته رسم می‌گردد. همچنین حیاتی‌ترین اتصالات میان دو زیرساخت و آسیب‌پذیر‌ترین نقاط هر زیرساخت از نتایج حاصل از تحلیل مدل حاضر شناسایی می‌گردد. این نتایج می‌تواند در تدوین دستورالعمل اتصال شبکه مخابراتی به سیستم قدرت به‌کار رود.

کلیدواژه‌ها

موضوعات


[1] Ouyang, M. “Review on Modeling and Simulation of Interdependent Critical Infrastructure Systems”; Relib. Eng. Syst. Safe. 2014, 121, 43-60.
[2] Rinaldi, S. M.; Peerenboom, J. P.; Kelly, T. K. “Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies”; IEEE Contr. Syst. Mag. 2001, 21, 11-25.
[3] de Carvalho, R. S.; Mohagheghi, S. “Analyzing Impact of Communication Network Topologies on Reconfiguration of Networked Microgrids, Impact of Communication System on Smart Grid Reliability, Security and Operation”; North American Power Symposium , Denver, CO, 2016, 1-6.
[4] Zhu, Y.; Yan, J.; Sun, Y. L.; He, H. “Revealing Cascading Failure Vulnerability in Power Grids Using Risk-Graph”; IEEE Trans. Parall. Distr. 2014, 25, 3274-3284.
[5] Milanovic, J. V.; Zhu, W. “Modelling of Interconnected Critical Infrastructure Systems Using Complex Network Theory”; IEEE Trans. Smart Grid 2017, 9, 4637-4648.
[6] Fan, Y.; Li, J.; Zhang, D. “A Method for Identifying Critical Elements of a Cyber-Physical System Under Data Attack”; IEEE Access 2018, 6, 16972-16984.
[7] Chen, T. M.; Sanchez-Aarnoutse, J. C.; Buford, J. “Petri Net Modeling of Cyber-Physical Attacks on Smart Grid”; IEEE Trans. Smart Grid 2011, 2, 741-749.
[8] Ismail, Z.; Leneutre, J.; Bateman, D.; Chen, L. “Managing Security Risks Interdependencies between ICT and Electric Infrastructures: A Game Theoretical Analysis”; Game Theory for Security and Risk Management, Springer, 2018, 223-250.
[9] Yan, Y.; Qian, Y.; Sharif, H.; Tipper, D. “A Survey on Smart Grid Communication Infrastructures: Motivations, Requirements and Challenges”; IEEE Commun. Surv. Tut. 2012, 15, 5-20.
[10] Shi, L.; Dai, Q.; Ni, Y. “Cyber–Physical Interactions in Power Systems: A Review of Models, Methods, and Applications”; Electr. Power Syst. Res. 2018, 163, 396-412.
[11] Sayydipour, S.; Ghaffarpour, R.; Ranjbar, A. M. “A Review on Vulnerability Analysis of Electric Grid: Approaches, Models, and Solution Methods”; Adv. Defence Sci. Technol. 2018, 9, 11-28. [In Persian]
[12] Newman, M. “Networks: an Introduction”; Oxford University Press, 2010.
[13] Radicchi, F. “Percolation in Real Interdependent Networks”; Nat. Phys. 2015, 11, 597-602.
[14] Xiao, H.; Yeh, E. M. “Cascading Link Failure in The Power Grid: A Percolation-Based Analysis”; 2011 IEEE Int. Conf. Communications Workshops, Kyoto, 2011, 1-6.
[15] Yuqi, H.; Chuangxin, G.; Shiying, M.; Dunwen, S. “Modeling Cascading Failures and Mitigation Strategies in PMU based cyberCyber-Physical Power Systems”; J. Mod. Power Syst. Cle. 2018, 6, 944-957.
[16] Huang, Z.; Wang, C.; Ruj, S.; Stojmenovic, M.; Nayak, A. “Modeling Cascading Failures in Smart Power Grid Using Interdependent Complex Networks and Percolation Theory”; IEEE 8th Conf. Industrial Electronics and Applications, Melbourne, VIC, 2013, 1023-1028.
[17] Huang, Z.; Wang, C.; Stojmenovic, M.; Nayak, A. “Characterization of Cascading Failures in Interdependent Cyber-Physical Systems”; IEEE Trans. Comput. 2015, 64, 2158-2168.
[18] Cho, J. H.; Moore, T. J. “Percolation-based Network Adaptability under Correlated Failures”; IEEE Conf. Computer Communications, Honolulu, HI, 2018, 2186-2194.
[19] Moore, T. J.; Cho, J. H. “Applying Percolation Theory”; Cyber Resilience of Systems and Networks, Springer, 2019, 107-133.