بررسی سازه‌ای و ژئوتکنیکی شمع‌ بتن مسلح تحت بار انفجار با استفاده از مدل‌سازی عددی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 ;کارشناسی ارشد،دانشگاه قم، قم، ایران

2 استاد،دانشگاه قم، قم، ایران

3 دانشجوی دکتری،دانشگاه قم،قم، ایران

چکیده

یک انفجار در نزدیکی یک شمع ممکن است موجب گسیختگی شمع و در نهایت گسیختگی سازه ساخته شده بر روی آن شود؛ بنابراین اتخاذ تدابیر لازم در خصوص بار ایجاد شده توسط انفجار، نیاز به درنظرگرفتن اثر انفجار در طراحی سازه‌ها به‌خصوص شمع‌ها دارد. باتوجه‌به پژوهش‌های صورت‌گرفته، انجام پژوهشی که هر دو جنبه ژئوتکنیکی و سازه‌ای اثر بار انفجار بر ظرفیت باربری شمع را لحاظ نماید، حس می‌شود؛ لذا در این پژوهش مدل‌سازی عددی شمع بتن مسلح تحت بار انفجار با استفاده از روش کوپل اویلری-لاگرانژی انجام شده و حداکثر کرنش فشاری بتن شمع و فواصل ایمن سازه‌ای به دست آمد. سپس با فواصل ایمن ژئوتکنیکی به‌دست‌آمده در تحقیقات گذشته مقایسه شده و عملکرد هم‌زمان ژئوتکنیکی و سازه‌ای شمع مورد بررسی قرار گرفت. بررسی تأثیر میزان آرماتور شمع بر رفتار سازه‌ای شمع نشان داد که فواصل ایمن سازه‌ای در خاک رسی و ماسه‌ای در اکثر موارد بیشتر از فواصل ایمن ژئوتکنیکی بوده است. همچنین دراین‌خصوص نتایج، نشان‌دهنده افزایش حداکثر کرنش فشاری بتن شمع با افزایش میزان درصد آرماتور در خاک ماسه‌ای و کاهش در خاک رسی است. علاوه‌برآن نتایج این تحقیق بیانگر بیشتر بودن محدوده تأثیر در خاک رسی نسبت به خاک ماسه‌ای است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Structural and Geotechnical Investigation of Reinforced Concrete Pile Under Blast Load Using Numerical Modeling

نویسندگان [English]

  • mohammad JAVAD Parmas 1
  • mahdi Khodaparast 2
  • Hosein Moghtadae 3
1 Master's degree, Qom University, Qom, Iran
2 Professor, Qom University, Qom, Iran
3 PhD student, Qom University, Qom, Iran
چکیده [English]

An explosion near a pile can cause the pile to break and eventually damage the structure built upon it. Taking measures to cope with the load created by an explosion requires consideration of its effect in the design of structures, especially piles. Research must consider both geotechnical and structural aspects of the effect of a blast load on pile bearing capacity. The current study numerically modeled a reinforced concrete pile under a blast load using the coupled Eulerian-Lagrangian method to obtain the maximum compressive strain of the concrete pile and the best distances for safety devices. The results were compared with geotechnical safe distances obtained in previous research. The geotechnical and structural performance of the piles were jointly investigated. The influence of the amount of pile reinforcement on the structural behavior of the pile indicated that the safe distance for a pile in clay and sand was greater than the geotechnical safe distance in most cases. The results showed an increase in the maximum compressive strain of the concrete pile with an increase in the percentage of reinforcement in sandy soil and a decrease in the percentage of reinforcement in clay soil. The results of indicated that the range of influence was greater in clay soil than in sandy soil.

کلیدواژه‌ها [English]

  • Structural and Geo technical Investigation
  • Compressive Strain
  • Coupled Eulerian-Lagrangian Method (CEL)
  • Blast Load

Smiley face

https://creativecommons.org/licenses/by/4.0/

   [1]      Jayasinghe, L. B.; Goh, A. T. C.; Thambiratnam, D. “Performance of Pile Groups Subjected to Surface Explosion”; 5th International Conference on Design and Analysis of Protective Structures, 2015.
   [3]      Khodaparast, M.; Mohamad Momeni, R.; Bayesteh, H. “Numerical Simulation of Surface Blast Reduction Using Composite Backfill”; Geosynt. Int. 2021, 1-46. http://doi.org/10.1680/jgein.21.00030.
   [6]      Jayasinghe, L. B.; Zhou, H. Y.; Goh, A. T. C.; Zhao, Z. Y.; Gui, Y. L. “Pile Response Subjected to Rock Blasting Induced Ground Vibration Near Soil-Rock Interface”; Comput. Geotech. 2017, 82, 1–15. http://doi.org/10.1016/ j.compgeo.2016.09.015
   [7]      Ibrahim, Y. E.; Nabil, M. “Finite Element Analysis of Pile Foundations Under Surface Blast Loads”; Spr. Natu. Sing. 2019, 446–460. http://doi.org/10.1007/978-981-13-8331-1_32.
   [8]      Jayasinghe, L. B.; Goh, A. T. C.; Zhao, Z.; Zhou, H.; Gui, Y. “Numerical Analysis of Reinforced Concrete Piles Under Blast Loads”; Int. Conf. Civil. Eng. Res. 2017, Indonesia. http://doi.org/10.12962/j23546026.y2017i6.3318.
   [9]      Hasanvand, P.; Hoseini, M. “Strengthening of Reinforced Concrete Bridge Columns Against Blast Loading and Comparison of Different Methods of Strengthening”; Pass. Def. 2023, 14. 
[10]      Jayasinghe, L. B.; Zhao, Z. Y.; Goh, A. T. C.; Zhou, H. Y.; Gui, Y. L.; Tao, M. “A Field Study on Pile Response to Blast-Induced Ground Motion”; Soil. Dyn. Earthq. Eng. 2018, 114, 568-575. http://doi.org/ 10.1016/j.soildyn. 2018.08.008.
[11]      Jayasinghe, L. B.; Thambiratnam, D. P.; Perera, N.; Jayasooriya, J. H. A. R. “Computer Simulation of Underground Blast Response of Pile in Saturated Soil”; Comput. Struct. 2013, 120, 86–95. http://doi.org/10.1016/ j.compstruc.2013.02.016.
[12]      Jayasinghe, L. B.; Zhou, H. Y.; Goh, A. T. C.; Zhao, Z. Y.; Gui, Y. L. “Pile Response Subjected to Rock Blasting Induced Ground Vibration Near Soil-Rock Interface”; Comput. Geotech. 2017, 82, 1–15. http://doi.org/10.1016/ j.compgeo.2016.09.015.
[13]      Chakraborty, T. “Analysis of Hollow Steel Piles Subjected to Buried Blast Loading”; Comput. Geotech. 2016, 78, 194–202. http://doi.org/10.1016/j.compgeo.2016.05.015.
[14]      Ibrahim, Y. E-H.; Nabil, M. “Risk of Surface Blast Load on Pile Foundations”; Mag. Civil. Eng. 2019, 90, 47–61. http://doi.org/10.18720/MCE.90.5
[15]      Ray, M. N.; Belhe, R.; Vaidya, N. R.; Ozkan, M. K. “Vibration Response in Pile Foundation Embedded in Soil Due to Underground Explosion”; Conf. Struct. Mech. React. Tech. 2017, BEXCO, Busan, Korea - August 20-25.
[16]      Khodaparast, M.; Hosseini, S. H.; Moghtadaei, H. “Determination of Blast Impact Range and Safe Distance for a Reinforced Concrete Pile Under Blast Loading”; Int. J. Eng. 2023, 36, 384-397. http://doi.org/10.5829/IJE.2023. 36.02B.17.
[17]      Han, L. H.; Elliott, J. A.; Bentham, A. C.; Mills, V.; Amidon, G. E.; Hancock, B. C. “A Modified Drucker-Prager Cap Model for Die Compaction Simulation of Pharmaceutical Powders”; Int. J. Solids. Struct. 2008, 45. 3088–3106. http://doi.org/10.1016/j.ijsolstr.2008.01.024.
[18]      Lubliner, J.; Oliver, J.; Oller, S.; Onate, E. “A Plastic-Damage Model for Concrete”; Solids Struct. 1989, 25, 299-326. http://doi.org/10.1016/0020-7683(89)90050-4.
[19]      Jankowiak, T.; Odygowski, T. “Identification of Parameters of Concrete Damage Plasticity Constitutive Model”; Found. Civil. Env. Eng. 2005, 6.
[20]      Shrot, A.; Baker, M. “Determination of Johnson–Cook Parameters from Machining Simulations”; Comput. Mat. Sci. 2012, 52, 298–304. http://doi.org/ 10.1016/j.commatsci. 2011.07.035.
[21]      Moghtadaei, H.; Khodaparast, M. ‘‘Effect of Explosive Load on the Depth Required for Geotechnical Identification’’; Civil. Infrastructure. Res. 2022, 8, 61-76. http://doi.org/10.22091/CER.2022.7558.1323 (In Persian).
[22]      Rigby, S. E.; Sielicki, P. W. “An Investigation of TNT Equivalence of Hemispherical PE4 Charges”; Eng. Trans. 2014, 62, 423–435.
[23]      Luccioni, B.; Ambrosini, D.; Nurick, G.; Snyman, I. “Craters Produced by Underground Explosions”; Comput. Struct. 2009, 87, 1366–1373. http://doi.org/10.1016/ j.compstruc.2009.06.002.
[24]      Jack, P.; Gregory, M. “Building Code Requirements for Structural Concrete”; American. Conc. Inst. 2019 (ACI 318-19).
[25]      Topic 9 of National Building Regulations. 2012, design and implementation of reinforced concrete buildings, 4th edition, Ministry of Housing and Urban Development, Tehran, Iran Development Publishing House.