ارزیابی امنیت دینامیکی سیستم‌‌های قدرت با استفاده از الگوریتم‌های یادگیری جمعی

نوع مقاله : قدرت- انتقال و توزیع

نویسندگان

1 دانشیار، دانشگاه شهید مدنی آذربایجان،تبریز،ایران

2 دانشجوی کارشناسی ارشد، دانشگاه شهید مدنی آذربایجان،تبریز،ایران

3 دانشجوی دکتری، دانشگاه شهید مدنی آذربایجان،تبریز،ایران

چکیده

باتوجه‌به اهمیت ارزیابی امنیت دینامیکی و ضرورت انجام اقدامات کنترلی پس از بروز اغتشاش، ارزیابی امنیت دینامیکی آنلاین جایگزین ارزیابی آفلاین شده است. روش­هایی که به‌طور رایج در ارزیابی امنیت دینامیکی به کار برده می­شوند در مواجهه با پیشامدهای خطرناک که سرعت وقوع بالایی داشته باشند، مناسب نیستند. بنابراین، ضروری است تا ارزیابی پایداری گذرا به‌صورت آنلاین و در زمان واقعی انجام گیرد تا اپراتورها فرصت مناسب برای انجام اقدام اصلاحی را داشته باشند. به همین منظور در این مطالعه، از روش‌های یادگیری ماشین جمعی جهت ارزیابی امنیت دینامیکی آنلاین بهره گرفته شده است. مسئله موردبررسی یک طبقه­بندی چند کلاسی است که به طبقه­بندی وضعیت امنیت دینامیکی سیستم می­پردازد. روش پیشنهادی بر روی دو سیستم استاندارد مورد ارزیابی قرارگرفته است. همچنین مقایسه­ای بین روش­های یادگیری جمعی پیشنهادی با الگوریتم‌های منفرد انجام‌گرفته است. نتایج حاکی از آن است که روش پیشنهادی ضمن دقت، از عملکرد مناسبی برخوردار بوده و برای ارزیابی امنیت دینامیکی آنلاین مناسب بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic Security Assessment of Power Systems Using Ensemble Learning Algorithms

نویسندگان [English]

  • Amin Safari 1
  • Zahra Bahari Lashkari 2
  • Meysam Shahriyari 3
1 Associate Professor, Shahid Madani University of Azerbaijan, Tabriz, Iran
2 Master's student, Shahid Madani University Azerbaijan, Tabriz, Iran
3 PhD student, Shahid Madani University of Azerbaijan, Tabriz, Iran
چکیده [English]

Considering the importance of dynamic security assessment and the necessity of implementing control measures after a disturbance, online dynamic security assessment has replaced offline assessment. Methods which are commonly used in dynamic security evaluation are not suitable for serious events which have a high rate of occurrence. Therefore, it is essential to perform real time transient stability assessment in order to increase operators opportunity to take remedial actions. For this purpose, in this study, ensemble machine learning methods have been used to evaluate online dynamic security. The investigated problem is a multi-class classification that deals with classifying of system’s dynamic security status. The proposed method has been evaluated on two standard systems. Also, a comparison has been made between the proposed ensemble learning methods and individual algorithms. The results indicate that the proposed method, not only accurate but also has good performance in evaluating online dynamic security.

کلیدواژه‌ها [English]

  • Dynamic Security z Assessment
  • Pattern Recognition
  • Feature Selection
  • Prediction
  • Ensemble Decision Tree
  • Machine Learning

Smiley face

https://creativecommons.org/licenses/by/4.0/

  1. Shahpari, A.; Khansari, M.; Moeini, A. “Prediction of Vulnerability in Iran's Power Grid by Link Analysis”; Adv. Defence Sci. Technol. 2018, 9, 461-466.
  2. Shahidehpour, M.; Tinney, W. F.; Fu, Y. “Impact of Security on Power Systems Operation”; IEEE 2005, 11, 2013–2025. http://doi.org/10.1109/JPROC.2005.857490.
  3.  Shahriyari, M.; Safari, A.; Quteishat, A.; Afsharirad, H. “A Short-Term Voltage Stability Online Assessment Based on Multi-Layer Perceptron Learning”; Electr. Pow. Syst. Res. 2023, 223, 109562. https://doi.org/10.1016/j.epsr.2023. 109562.
  4. Sayydipour, S.; Ghaffarpour, R.; Ranjbar, A. “A Review on Vulnerability Analysis of Electric Grid: Approaches, Models, and Solution Methods”; Adv. Defence Sci. & Technol. 2018, 9, 11-28. DOR: https://dorl.net/dor/ 20.1001.1.26762935.1397.9.1.2.7 Sayy
  5.  Shahriyari, M.; Khoshkhoo, H. “A Novel Approach for Fast Prediction of Transient Angle Stability Status in Power Systems”; J. Adv. Defence Sci. & Technol. 2020, 3, 309-324. DOR: https://dorl.net/dor/220.1001.1.26762935.1399.11.3.8.1
  6.  Patel, H. H.; Prajapati, P. “Study and Analysis of Decision Tree Based Classification Algorithms”; Int. J. Comp. Sci. Eng. 2018, 6, 74-78.
  7. Pal, M. “Ensemble Learning With Decision Tree for Remote Sensing Classification”; World Acad. Sci. Eng. Technol. 2007, 36, 258-260.
  8.  Kalyani, S.; Swarup, K. S. “Classification and Assessment of Power System Security Using Multiclass SVM”; IEEE Trans. Syst. Man Cybernetic C., 2010, 41, 753-758. https://doi.org/1109/TSMCC.2010.2091630
  9. Liu, C.; Sun, K.; Rather, Z. H.; Chen, Z.; Bak, C. L.; Thøgersen, P.; Lund, P. “A Systematic Approach for Dynamic Security Assessment and The Corresponding Preventive Control Scheme Based on Decision Trees”; IEEE Trans. Power Syst. 2013, 29, 717-730. https://doi.org/1109/TPWRS.2013.2283064
  10. Zhukov, A.; Tomin, N.; Kurbatsky, V.; Sidorov, D.; Panasetsky, D.; Foley, A. “Ensemble Methods of Classification for Power Systems Security Assessment”; Appl. Applied Comput. Inform. 2019, 15, 45-53. https://doi.org/10.1016/j.aci.2017.09.007
  11. Liu, C.; Tang, F.; Leth Bak, C. “An Accurate Online Dynamic Security Assessment Scheme Based on Random Forest”; Energies 2018, 11, 1914. https://doi.org/10.3390/ en11071914
  12. Liu, J.; Sun, H.; Li, Y.; Fang, W.; Niu, S. “An Improved Power System Transient Stability Prediction Model Based on mRMR Feature Selection and WTA Ensemble Learning”; Appl. Sci. 2020, 10, 2255. https://doi.org/ 10.3390/app10072255
  13. Shahriyari, M.; Khoshkhoo, H.; Pouryekta, A.; Ramachandaramurthy, V. K. “Fast Prediction of Angle Stability Using Support Vector Machine and Fault Duration Data”; IEEE Int. Conf. Aut. Ctr. Intelligent Syst., 2019, 258-263. https://doi.org/1109/I2CACIS.2019.8825052
  14. Li, H.; Diao, R.; Zhang, X.; Lin, X.; Lu, X.; Shi, D.; Wang, Z.; Wang, L. “An Integrated Online Dynamic Security Assessment System for Improved Situational Awareness and Economic Operation”; IEEE Access 2019, 7, 162571-162582. https://doi.org/1109/ACCESS.2019.2952178.
  15. Khoshkhoo, H.; Akbarzadeh, P. "Prediction of Voltage Stability Status Considering the Impact of the Protection System”, J. Adv. Defence Sci. & Technol.  2021., 3, 251-263. DOR: 20.1001.1.26762935.1400.12.4.3.5
  16. Anwar, N.; Hanif, A.; Khan, H.F.; Ullah, M. F. “Transient Stability Analysis of The IEEE-9 Bus System Under Multiple Contingencies”; Eng. Technol. Appl. Sci. Res. 2020, 10, 5925-5932.
  17. Shahriyari, M.; Khoshkhoo, H. “A Deep Learning-Based Approach for Comprehensive Rotor Angle Stability ‌ Assessment”; Oper. Autom. Power Eng. 2022, 10, 105-112. https://doi.org/10.22098/JOAPE. 2022.8701.1607.
  18. Dietterich, T. G. “Ensemble Learning”; The handbook of brain theory and neural networks 2002, 2, 110-125.
  19. Silva-Palacios, D.; Ferri, C.; Ramírez-Quintana, M. J. “Improving Performance of Multiclass Classification by Inducing Class Hierarchies”; Procedia Comput. Sci. 2017, 108, 1692-1701. https://doi.org/10.1016/j.procs.2017. 05.218.
  20. Zhou, Z. H. “Ensemble Methods: Foundations and Algorithms”; CRC Press., 2012.
  21. Witten, I. H.; Frank, E.; Hall, M. A.; Pal, C. J.; DATA, M. “Practical Machine Learning Tools and Techniques”; Data Mining. Fourth Edition, Elsevier Publishers 2017.
  22. Bühlmann, P.; Hothorn, T. “Boosting Algorithms: Regularization, Prediction and Model Fitting”; Statist. Sci. 2007, 22, 477-505. https://doi.org/1214/07-STS242.
  23. Cutler, A.; Cutler, D. R.; Stevens, J. R. “Random Forests”; Ensemble Machine Learning: Methods and Applications 2012, 157-175. https://doi.org/10.1007/978-1-4419-9326-7-5
  24. Hastie, T.; Rosset, S.; Zhu, J.; Zou, H. “Multi-Class Adaboost”; Stat. Interface 2009, 2, 349-360. doi:https://dx.doi.org/10.4310/SII.2009.v2.n3.a8
  25. Zhang, S.; Zhang, C.; Yang, Q. “Data Preparation for Data Mining”; Appl. Artif. Intell. 2003, 17, 375–381. https://doi.org/10.1080/713827180.
  26. Zhang, Y.; Xu, Y.; Dong, Z. Y. “Robust Classification Model for PMU‐Based Online Power System DSA with Missing Data”; IET Gener. Transm. Dis. 2017, 11, 4484-4491. https://doi.org/10.1049/iet-gtd.2016.2010.
  27. Bachu, V.; Anuradha, J. “A Review of Feature Selection and Its Methods”; Cybernetics and Information Technologies 2019, 19(1), 3-26
  28. Al-Harbi, O. “A Comparative Study of Feature Selection Methods for Dialectal Arabic Sentiment Classification Using Support Vector Machine”; arXiv preprint arXi 1902.06242 2019. https://doi.org/10.48550/arXiv.1902. 06242.
  29. Yang, J.; Qu, Z.; Liu, Z. “Improved Feature-Selection Method Considering The Imbalance Problem in Text Categorization”; Scientific World Journal 2014, https://doi.org/10.1155/2014/625342.
  30. Sun, M.; Konstantelos, I.; Strbac, G. “A Deep Learning-Based Feature Extraction Framework for System Security Assessment”; IEEE Trans. Smart Grid 2018, 10, 5007-5020. https://doi.org/1109/TSG.2018.2873001.
  31. Kulkarni, A.; Chong, D.; Batarseh, F. A. “Foundations of Data Imbalance and Solutions for a Data Eemocracy”; Data democracy. Academic Press, 2020, 83-106. https://doi.org/10.1016/B978-0-12-818366-3.00005-8.
  32. Sekhar, P.; Mohanty, S. “Classification and Assessment of Power System Static Security Using Decision Tree and Random Forest Classifiers”; Int. J. Numer. Model. El. 2016 29, 465-474. https://doi.org/10.1002/jnm.2096.
  33. Zhang, T.; Sun, M.; Cremer, J. L.; Zhang, N.; Strbac, G.; Kang, C. “A Confidence-Aware Machine Learning Framework for Dynamic Security Assessment”; IEEE Trans. Power Syst., 2021, 36, 3907-3920. https://doi.org/1109/TPWRS.2021.3059197.
  34. Xyngi, I.; Ishchenko, A.; Popov, M.; van der Sluis, L. “Transient Stability Analysis of a Distribution Network with Distributed Generators”; IEEE Trans. Power Syst. 2009, 24, 1102-1104. https://doi.org/1109/TPWRS.2008.2012280.
  35. Fan, Y.; Li, X.; Zhang, P. “Integrated Approach for Online Dynamic Security Assessment with Credibility and Visualization Based on Exploring Connotative Associations in Massive Data”; IEEE Access 2017, 5, 16555-16567. https://doi.org/1109/ACCESS.2017.2739818.
  36. Liu, S.; Liu, L.; Fan, Y.; Zhang, L.; Huang, Y.; Zhang, T.; Cheng, J.; Wang, L.; Zhang, M.; Shi, R.; Mao, D. “An Integrated Scheme for Online Dynamic Security Assessment Based on Partial Mutual Information and Iterated Random Forest”; IEEE Trans. Smart Grid. 2020, 11, 3606-3619. https://doi.org/1109/TSG.2020.2991335.
  37. Mukherjee, R.; De, A. “Development of an Ensemble Decision Tree-Based Power System Dynamic Security State Predictor”; IEEE Syst. J. 2020, 14, 3836-3843. https://doi.org/1109/JSYST.2020.2978504.
  38. Sharma, S.; Velgapudi, N. S.; Pandey, K. “Performance Analysis of IEEE 9 Bus system using TCSC”; IEEE Recent Developments in Control, Automation & Power Engineering 2017, 251-256. https://doi.org/10.1109/RDCAPE.2017. 8358277.
  39. Shahriyari, M.; Khoshkhoo, H.; Guerrero, J. M. “A Novel Fast Transient Stability Assessment of Power Systems Using Fault-on Trajectory”; IEEE Syst. J. 2022, 16, 4334-4344. https://doi.org/1109/JSYST.2022.3148815.