مدل‌سازی مسیریابی بهینه‌ی ریز پرنده‌های خودمختار با استفاده از سیستم‌های استنتاج فازی و الگوریتم‌های تکاملی

نوع مقاله : کامپیوتر - محاسبات نرم و هوش مصنوعی

نویسندگان

1 استادیار آکادمی هوش مصنوعی و فناوریهای نوین، تهران، ایران

2 کارشناسی ارشد، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

یک سیستم هدایت خودکار در پرنده‌های بدون سرنشین را می‌توان به دو بخش: سیستم طراحی مسیر و سیستم تعقیب مسیر تقسیم نمود. در این سیستم‌ها باتوجه‌به محدودیت‌های زمانی و عدم قطعیت موجود در شرایط حاکم بر صحنه‌ی نبرد، استفاده از خبرگی فرماندهان نظامی و شبیه‌سازی رفتار آنها در انجام فرآیندهای طراحی و تعقیب مسیر از اهمیت بسیار بالایی برخوردار است؛ لذا باتوجه‌به ویژگی سیستم‌های استنتاج فازی با به‌کارگیری آنها می‌توان خبرگی فرماندهان را در هدایت پرنده‌های بدون سرنشین اعمال نمود. در این مقاله به‌منظور مدل‌سازی فرآیند مسیریابی آفندی، ریز پرنده‌ها از یک سیستم استنتاج فازی ممدانی با پنج ورودی و یک خروجی برای تعیین وزن یال‌ها استفاده شده است. در هر مرحله از فرآیند تصمیم‌گیریِ انتخاب مسیر بهینه، نیاز به انجام محاسبات ریاضی پیچیده می‌تواند الگوریتم‌های مسیریابی ریز پرنده‌ها را در شرایط دنیای واقعی بلااستفاده نماید. ازاین‌رو به‌منظور کاهش وابستگی سیستم مسیریابی و تعقیب هدف به محاسبات ریاضی و استفاده از مزایای الگوریتم‌های همه زمانه برای تولید پاسخ بهینه، الگوریتم ژنتیک و الگوریتم ژنتیک با مرتب‌سازی غیر مغلوب-2 به‌عنوان روش حل مدل استفاده شده است. نتایج شبیه‌سازی نشان می‌دهد که ترکیب الگوریتم ژنتیک و سیستم استنتاج فاری در انجام فرآیند مسیریابی در شرایط دنیای واقعی دارای کارایی بسیار مطلوبی است و می‌تواند پاسخ‌گوی نیازهای عملیاتی فرماندهان این حوزه باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the Optimal Routing of Autonomous Microbirds Using Fuzzy Inference Systems and Evolutionary Algorithms

نویسندگان [English]

  • Abdolreza AsadiGhanbari 1
  • Seyed Abbas Sadatinejad 2
1 Assistant Professor, Academy of Artificial Intelligence and New Technologies, Tehran, Iran
2 Master's degree, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

An automatic guidance system in drones can be divided into two parts: path design and follow the path. In these systems, due to the time limitations and the uncertainty in the conditions prevailing on the battlefield, it is very important to use the expertise of the military commanders and emulate their behavior in these systems, due to the time constraints and the uncertainty in the conditions prevailing on the battlefield, it is very important to use the expertise of military commanders and simulate their behavior in the design and route tracking processes. Therefore, according to the characteristics of fuzzy inference systems, by using them, the commanders' expertise can be applied in autonomous drones. In this article, in order to model the UAVs offensive routing, a Mamdani fuzzy inference system with five inputs and one output is used to determine the edges weight. At each stage of decision-making process of choosing the optimal route, the need to perform complex mathematical calculations can make drone routing algorithms useless in real-world conditions. Therefore, in order to reduce the dependence of the routing and target tracking system on mathematical calculations and to use the advantages of anytime algorithms to produce the optimal answer, genetic algorithm and non-dominant sorting genetic algorithm-II have been used as the method of solving the model. The simulation results show that the combination of genetic algorithm and fuzzy inference system has a very favorable efficiency in performing the routing process in real world conditions and can meet the operational needs of commanders in this field.

کلیدواژه‌ها [English]

  • Network-Oriented Operations
  • Drone Swarming
  • Routing
  • Fuzzy Logic
   [1]      Feifei, Z.; Yi, Z.; Bing, H.; Hongjian, F.; Zhuoya, Z. “Nature-inspired Self-organizing Collision Avoidance for Drone Swarm Based on Reward-modulated Spiking Neural Network”; Patterns 2022, 3, 100611.
   [2]      Zhen, Y.; Junli, L.; Liwei, Y.; Qian, W.; Ping, L.; Guofeng, Xia. “Path Planning and Collision Avoidance Methods for Distributed Multi-Robot Systems in Complex Dynamic Environments”; Math. Biosci. Eng. 2023, 20, 145-178.
   [4]      Chen, Y.; Dong, Q.; Shang, X.; Wu, Z.; Wang, J. “Multi-UAV Autonomous Path Planning in Reconnaissance Missions Considering Incomplete Information: A Reinforcement Learning Method”; Drones 2022, 7, 10. https://doi.org/10.3390/drones7010010.
   [5]      He, W.; Qi, X.; Liu, L. “A Novel Hybrid Particle Swarm Optimization for Multi-UAV Cooperate Path Planning”; Appl. Intell. 2021, 51, 7350-7364.
   [6]      Fadi, A.; Hadi, Z.; Ibrhaim A.; Reda, D. “Optimized Unmanned Aerial Vehicles Deployment for Static and Mobile Targets’ Monitoring”; Comput. Commun. 2020, 149, 27-35. 
   [7]      Manne, A. S. “A Target-Assignment Problem”; Oper. Res. 1958, 6, 346-351.
   [8]      Ejaz, W.; Sharma, S. K.; Saadat, S. ; Naeem, M.; Chughtai, N. A. “A Comprehensive Survey on Resource Allocation for CRAN in 5G and Beyond Networks”; J. Netw. Comput. Appl. 2020, 16, 102638.
[10]      Asif, A.; Awais K.; Rashid, A.; Haque, N. “Unmanned Aerial Vehicles: A  Review”; Cognitive Robotics. 2023, 3, 8-22.
[11]      Aggarwal, S.; Kumar, N. “Path Planning Techniques for Unmanned Aerial Vehicles: A Review, Solutions, and Challenges”; Comput. Commun. 2020, 149, 270-299.
[12]      Sudhir, K.; Raj, S.; Saikat, B.; Hutanshu, K. “Comparative Review Study of Military and Civilian Unmanned Aerial Vehicles (uavs)”; Incas. Bull. 2019, 11, 183-198. 
[13]      Haque, N.; Husnain, M.; Shafiq, M. “Applications of Unmanned Aerial Vehicles: A Review”; 3C Tecnol. 2019, 3, 85-105, https://doi.org/10.17993/3ctecno. 2019.
[14]      Goerzen, C.; Kong, Z.; Mettler, B. “A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance”; J. Intell. Robot. Syst. 2010, 57, 65-100.
[15]      Zhenyu, N.; Jun, W.; Chungang, L.; Mingxiang, G.; Zihe, G. “Join Trajectory Optimization and Communication Design for UAV-Enabled OFDM Networks”; Ad. Hoc. Netw. 2020, 98, 102031.
[16]      Yan, S.; Dongfang, X.; Derrick, N.; Linglong, D.; Robert, S. “Optimal 3D-trajectory Design and Resource Allocation for Solar-powered UAV Communication Systems”; IEEE Trans. Commun. 2019, 67, 4281-4298.
[17]      Menon, P.; Kim, E. “Optimal Helicopter Trajectory Planning for Terrain Following Flight”; M.Sc. Thesis, School of Aerospace Eng., Georgia Inst. of Technology, 1990.
[18]      Menon, P.; Kim, E. “Optimal Trajectory Synthesis for Terrain-Following Flight”; J. Guid. Control. Dyn. 1991, 14, 807-813.
[19]      Twigg, S.; Calise, A.; Johnson, E. “Online Trajectory Optimization for Autonomous Air Vehicles”; AIAA Guidance, Navigation, and Control Conf. and Exhibit, Austin, Texas, 2003.
[20]      Twigg, S.; Calise, A.; Johnson, E. “3D Trajectory Optimization for Terrain Following and Terrain Masking”; AIAA, Guidance, Navigation, and Control Conf. and Exhibit, Keystone, Colorado, 2006.
[21]      Alejandro, P.; Daniel, R.; Eurico, P.; Artur, P.; Nuno, L.; Enrique, F. “Q-Learning Based System for Path Planning with Unmanned Aerial Vehicles Swarms in Obstacle Environments”; Expert Syst. Appl. 2024, 235, 121240.
[22]      Kreinovich, V.; Nguyen, H. “Which Fuzzy Logic is the Best: Pragmatic Approach (and its Theoretical Analysis)”; Fuzzy Sets. Syst. 2006, 157, 611-614. 
[23]      Tsourdos, A.; White, B.; Shanmugavel, M. “Cooperative Path Planning of Unmanned Aerial Vehicles”; John Wiley & Sons, Ltd, Publications, 2011.
[24]      Ghanbari, A. A.; Alaei, H. “Meta-Heuristic Algorithms for Resource Management in Crisis Based on OWA Approach”; Appl. Intell. 2021, 51, 646-657. 
[25]      Curry, D.; Dagli, C. “Computational Complexity Measures for Many-objective Optimization Problems”; Procedia Comput. Sci. 2014, 36, 185-191.
[26]      Dogan, A.; Zengin, U. “Unmanned Aerial Vehicle Dynamic-target Pursuit by Using Probabilistic Threat Exposure Map”; J. Guid. Control. Dyn. 2006, 29, 944-954.