طراحی کنترل‌کننده‌های کلاسیک و فازی PID، PD و PI برای کنترل بازوی مکانیکی بالابر باسکول‌دار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشگاه آزاد اسلامی، ، فیروزکوه، ایران

2 دانشیار، دانشگاه آزاد اسلامی، فیروزکوه، ایران.

چکیده

رباتیک برای کمک به توسعه صنایع و کاهش مصدومیت انسانی کاربرد فراوانی یافته و با تنظیم کنترل‌کننده برای دستیابی به سرعت و دقت مناسب می‌توان عملکرد این ربات‌ها و در نتیجه کاهش آمار مصدومیت‌ها را بهبود بخشید. تاکنون کنترل‌کننده‌ها اغلب از معادلات حاکم بر سینماتیک مستقیم و معکوس، با هدف کنترل موقعیت مجری نهایی بازو استفاده می‌کردند. حل دشوار معادلات سینماتیک مستقیم و معکوس، خطا در حل معادلات، نبود محیط کاربرپسند، انعطاف‌ناپذیری در تصمیم‌گیری و حجم محاسبات از مشکلات سامانه‌های کنترلی موجود رباتیک است. در این مقاله، ربات بالابر توسط دو روش کنترلی کلاسیک و Fuzzy و با 4 درجه آزادی مدل شده که در آن چهار قسمت از بازو توسط کنترل‌کننده‌های PID، PD و PI  بررسی شده و از Matlab-Simulink به‌عنوان ابزار برای آزمایش ویژگی‌های حرکتی ربات استفاده شده است. مشاهده شد که کنترل‌کننده PD  با وجود نداشتن درصد بالازدگی، در اکثر موارد منجر به ایجاد خطای حالت ماندگار می‌شود. در حالی که، کنترل‌کننده‌ PI در اکثر موارد زمان نشست مطلوبی ارائه می‌دهد ولی درصد بالازدگی بالاتری نسبت به PID دارد. در نهایت، نتایج نشان داد که کنترل‌کننده PID فازی پاسخ‌های بهتری نسبت به کنترل‌کننده PID کلاسیک و کنترل‌کننده‌های کلاسیک و فازی PI و PD ارائه می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of Classic and Fuzzy PID, PD, and PI Controllers for Control of a Bascule Lift Mechanical Arm

نویسندگان [English]

  • Reza Rahbar Hadi Bigloo 1
  • Mohammad Mehdi Movahedi 2
1 PhD Student, Department of Management Industrial, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
2 Associate Professor, Department of Management Industrial, Firoozkooh Branch, Islamic Azad University, Firoozkooh, Iran
چکیده [English]

Robotics has been widely used to develop industries and reduce human injuries, and by adjusting the controller to achieve proper speed and accuracy, improvement of the performance of these robots and reducing the number of injuries can be achieved. Until now, controllers have often used the governing equations of direct and inverse kinematics, aiming to control the position of the final actuator of the arm. Difficulty to solving direct and inverse kinematics equations, errors in solving equations, lack of user-friendly environment, inflexibility in decision-making and the volume of calculations are among the problems of existing robotic control systems. In this article, the lifting robot is modeled by two control methods (Classic and Fuzzy) with 4 degrees of freedom, in which four parts of the arm are checked by PID, PD and PI controllers and Matlab-Simulink is used as a tool for testing the robot's movement characteristics. It was observed that the PD controller, despite not having a high percentage, leads to a steady state error in most cases. While, the PI controller provides a favorable settling time in most cases, it has a higher increase percentage than PID. Finally, the results showed that the fuzzy PID controller provides better responses than the classical PID controller and the classical and fuzzy PI and PD controllers.
 

کلیدواژه‌ها [English]

  • Robot Arm
  • Boom Lift Robot
  • Degree of Freedom
  • Classic Controller
  • Fuzzy Controller

Smiley face

  1. Katsueh, K. O. “Digital Control Systems”; University of Tehran Press, 7th Edition, 2012 (in Persian).
  2.  Mies, G. “Military Robots of the Present and the Future”; Technology 9.1.2010, 125-137.
  3.  Javaid, Kh.; Hong, B. “Military Robots - A Glimpse from Today and Tomorrow”; 8th Control, Automation, Robotics and Vision Conference, 2004, 1, 771-777.
  4.  Cristian, A.; Timothy, K.; Katharina, G.; Brian, M.; Oleg, S.; Paul, M.; Sridhar, L. “μSMET: A Lightweight Transport Robot”; Proc. SPIE 11758, Unmanned Systems Technology XXIII, 1175807, 12 April 2021.
  5. SINGER, P. W. “Wired for War”; The Penguin Press, New York, United States; ISBN 978-1-5942-0198-1. 2009.
  6. Soltanpour, M. R. “Variable Structure Tracking Control of Robot Manipulator in Task Space in the Presence of Structure and Unstructured Uncertainties in Dynamics and Kinematics”; J. Mech. Struct. Fluids. 2011, 1, 81-88 (in Persian).
  7.  Khoury, G. M.; Saad, M.; Kanaan, H. Y.; Asmar, C. “Fuzzy PID Control of a Five DOF Robot Arm”; J. Intell. Robot. Syst. 2004, 40, 299-320.
  8. Alassar, A. Z.; Abuhadrous, I. M.; Elaydi, H. A. “Modeling and Control of 5 DOF Robot Arm Using Supervisory Control”; 2nd Conf. Comput. Automat. Eng., 2010, 3, 351-355.
  9. Abedi, A.; Aydin S. “PID-ICA Controller Design for Robot Arm Drive Motor”; 22nd Conf. Mech. Eng., Ahvaz 2017 (in Persian).
  10. Ebrahimi, Z.; Chatraei, A.; Shah Nazari, O.; Pour Rahim, M. “Design and Practical Implementation of Intelligent Controller for Border Guard Robot”; Master Thesis, Islamic Azad University, Najafabad Branch. 2017 (in Persian).
  11. Talebi, N. “Design of a Robust Controller for Tracking the Position in Robots”; Natl. Conf. New Res. Electr. Comput. Med. Eng. 2017 (in Persian).
  12. Rahimi, A.; Saeed R.; Jamshid, P. “Design of Oscar Robot 4 Degrees of Freedom of Flexible Assembly Unit”; 1st Congr. Mater. Adv. Manuf. Ind. 2017 (in Persian).
  13. Davari, M.; Farshid S.N. “Using Fuzzy Logic to Infer Mathematical Angles and Effective Point Positions in Robotic Arm Joints”; 2nd Conf. New Approaches Comput. Electr. Eng. 2016 (in Persian)
  14. Basu, R.; Padage, S. “Development of 5 DOF Robot Arm-Gripper for Sorting and Investigating RTM Concepts”; Proc. Mater. Today 2017, 4, 1634-1643.
  15. Renuka, K.; Bhuvanesh, N.; Reena Catherine, J. “Kinematic and Dynamic Modelling and PID Control of Three Degree-of-Freedom Robotic Arm”; Adv. Mater. Res. 2021, 867-882.
  16. Al-Darraji, I.; Piromalis, D.; Kakei, A. A.; Khan, F. Q.; Stojmenovic, M.; Tsaramirsis, G.; Papageorgas, P. G. “Adaptive Robust Controller Design-based RBF Neural Network for Aerial Robot Arm Model”; Electron. 2021, 10, 831.
  17. Olmedo, N. A.; Barczyk, M.; Zhang, H.; Wilson, W.; Lipsett, M. G. “A UGV-based Modular Robotic Manipulator for Soil Sampling and Terramechanics Investigations”; J. Unmanned Veh. Syst. 2020, 8, 364-381.
  18. Jafaryan, S. H.; Aydin S. “Design and Simulation of Fuzzy Slip Resistant Resistor Controller for Movable Mechanical Arm Claw”; 3rd Conf. Electr. Comput. Eng. 2020 (in Persian).
  19. Nejad Korki, M. “Design of a Fuzzy Adaptive Controller for a Mechanical Arm”; 3rd Conf. on Soft Comput. 2020 (in Persian).
  20. Masih Abadi, S. “Implement Trans-Local Model Control on a Skilled Mechanical Arm”; 4th Conf. Technol. Electr. Comput. Eng. 2020 (in Persian).
  21. Dutta, V.; Borkakati, S.; O'Donnell, T.; Bora, D. “PI-Fuzzy Rule Based Controller for Analysis and Performance Evaluation of DC Motor Speed Control”; 2nd IEEE Conf. Power Eng. Renew. Energy. 2014.
  22. Oku, D. E.; Obot, E. P. “Comparative Study of PD, PI and PID Controllers for Control of a Single Joint System in Robots”; Int. J. Eng. Sci. 2018, 7(9.V2), 51-54.
  23. Shakya, R.; Rajanwal, K.; Patel, S.; Dinkar, S. “Design and Simulation of PD, PID and Fuzzy Logic Controller for Industrial Application”; Int. J. Inf. Comput. Technol. 2014, 4, 363-368.
  24. Pitalúa-Díaz, N.; Herrera-López, E. J.; Valencia-Palomo, G.; González-Angeles, A.; Rodríguez-Carvajal, R. A.; Cazarez-Castro, N. R. “Comparative Analysis between Conventional PI and Fuzzy Logic PI Controllers for Indoor Benzene Concentrations”; Sustain. 2015, 7, 5398-5412
  25. Zaidel, Y.; Shalumov, A.; Volinski, A.; Supic, L.; Ezra Tsur, E. “Neuromorphic NEF-based Inverse Kinematics and PID Control”; Front. Neurorobot. 2021, 15, p.631159.
  26. Mohammed, A. A.; Sunar, M. “Kinematics Modeling of a 4-DOF Robotic Arm”; IEEE Int. Conf. Control, Autom. Robot. 2015, 87-91.
  27. Jazar, R. N. “Theory of Applied Robotics”; Boston, Springer, 2010.
  28. Nazari, R.; Fakhrahmad, S. M. “Developing an Intrusion Detection System Based on Fuzzy Clustering and Whale Optimization Algorithm”; Adv. Defence Sci. & Technol. 2021, 2, 143-158. (In Persian)
  29. Soto-Hidalgo, J. M.; Vitiello, A.; Alonso, J. M.; Acampora, G.; Alcalá-Fdez, J. “Design of Fuzzy Controllers for Embedded Systems with JFML”; Int. J. Comput. Intell. Syst. 2019, 12, 204-214.
  30. Zhao, Z. Y.; Tomizuka, M.; Isaka, S. “Fuzzy Gain Scheduling of PID Controllers”; IEEE Trans. Syst., Man, Cybern. 1993, 23, 1392-1398.