اینورتر 7-سطحی مبتنی بر کلیدزنی-خازنی با قابلیت افزایندگی ولتاژ و متعادل‌سازی طبیعی شارژ خازن‌ها، مناسب برای تغذیه بارهای AC منفصل از شبکه

نوع مقاله : قدرت - الکترونیک قدرت

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه صنعتی سهند تبریز، تبریز، ایران

2 استادیار دانشگاه صنعتی سهند تبریز،تبریز،ایران

چکیده

تغذیه بارهای AC منفصل از شبکه برق سراسری نظیر بارهای نظامی و یا سامانه‌های پدافند، از اهمیت اساسی برخوردار است. این مقاله، ساختار جدیدی برای اینورترهای چندسطحی مبتنی بر کلیدزنی-خازنی ارائه می‌کند که قادر است در خروجی خود، شکل موج ولتاژ 7-سطحی با کیفیت بالا و محتوای هارمونیکی پایین را برای تغذیه بارهای AC دور از شبکه تولید می‌کند. ساختار پیشنهادی تنها از یک منبع DC استفاده می‌کند و قادر است تا ولتاژ خروجی را تا سه برابر ولتاژ ورودی، افزایش دهد. قابلیت افزایندگی در کاربرد پنل‌های خورشیدی بسیار ضروری است. تعداد ادوات کاهش‌یافته، محتوای هارمونیکی پایین ولتاژ خروجی و متعادل‌سازی طبیعی ولتاژ خازن‌ها از دیگر مزایای مهم ساختار پیشنهادی می‌باشند. اینورتر پیشنهادی قادر است تا تمامی انواع بارها، اعم از مقاومتی خالص، مقاومتی-سلفی و سلفی خالص را به‌خوبی تغذیه نماید. کوتاه بودن بازه زمانی تخلیه خازن‌ها، منجر به کاهش ریپل ولتاژ روی این عناصر، بهبود کیفیت ولتاژ، کاهش تلفات ناشی از ریپل ولتاژ و نیز بهبود بازده کل اینورتر می‌گردد. نتایج مقایسه‌ها نشانگر برتری ساختار پیشنهادی نسبت به ساختارهای مشابه موجود است. صحت عملکرد اینورتر پیشنهادی در شرایط کاری مختلف نیز از طریق شبیه‌سازی‌های انجام‌گرفته در محیط MATLAB/Simulink و همچنین نتایج آزمایشگاهی مورد تأیید قرارگرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Switched-Capacitor based 7-Level Inverter Capable of Voltage-Boosting and Natural Voltage Balancing of Capacitors, Suitable for Supplying Off-Grid AC Loads

نویسندگان [English]

  • Paria Kargar 1
  • Mahdi Karimi 1
  • Kazem Varesi 2
1 Sahand University of Technology
2 Sahand University of Technology
چکیده [English]

The feeding of off-grid AC loads, like military loads or defense systems is of high importance. This paper proposes a novel structure for Switched-Capacitor based Multi-Level Inverter (SCMLI) that produces a high quality (low THD) 7-level output-voltage waveform for supplying off-grid AC loads. The proposed inverter requires only single DC-source and can boost the input voltage up to three times, at the output port. The boosting capability is very crucial at PV applications. The reduced device count, high quality (low THD) output voltage, and natural voltage balancing of capacitors are other main merits of suggested inverter. The proposed inverter can effectively supply any load type, including pure resistive, resistive-inductive and pure inductive loads. The short discharging interval of capacitors leads to reduced capacitors' voltage-ripple, high voltage quality, low voltage-ripple losses and better inverter efficiency. Comparison results approve the superiority of proposed converter over existed counterparts. Also, the correct operation of proposed inverter during different operational conditions, has been validated by simulation (performed in MATLAB-Simulink software) and experimental analysis.

کلیدواژه‌ها [English]

  • : Multilevel Inverter
  • Natural Voltage Balancing of Capacitors
  • Switched-Capacitor
  • Voltage Gain
  • Voltage Stress

Smiley face

  1.  Roy, T.; Sadhu, P. K. “A Step-Up Multilevel Inverter Topology Using Novel Switched Capacitor Converters with Reduced Components”; IEEE Trans. Ind. Electron. 2020, 68, 1, 236-247.
  2.  Karimi, M.; Kargar, P.; Varesi, K.; Padmanaban, S. “An Enhanced Power Quality Single‐Source Large Step‐Up Switched‐Capacitor Based Multi‐Level Inverter Configuration with Natural Voltage Balancing of Capacitors”; Book Title: Design and Development of Efficient Energy Systems, Wiley, 2021, 307-338.
  3. [3] Hosseini, S. H.; Varesi, K.; Ardashir, J. F.; Gandomi, A. A.; Saeidabadi, S. “An Attempt to Improve Output Voltage Quality of Developed Multi-Level Inverter Topology by Increasing the Number of Levels”; Nineth Int. Conf. on Electrical and Electronics Engineering 2015, 665-669.
  4. [4] Vijeh, M.; Rezanejad, M.; Samadaei, E.; Bertilsson, K. “A General Review of Multilevel Inverters based on Main Submodules: Structural Point of View”; IEEE Trans. Power Electron. 2019, 34, 9479-9502.
  5. [5] Deliri, S.; Varesi, K.; Siwakoti, Y. P.; Blaabjerg, F. “A Boost Type Switched‐Capacitor Multi‐Level Inverter for Renewable Energy Sources with Self‐Voltage Balancing of Capacitors”; Int. J. Energy Res. 2021, 45, 15217-15230.
  6. [6] Varesi, K.; Karimi, M.; Kargar, P. “A New Cascaded 35-Level Inverter with Reduced Switch Count”; Iranian Conf. on Renewable Energy & Distributed Generation 2019, 1-5.
  7. [7] Karimi, M.; Kargar, P.; Varesi, K. “A Novel Sub-Multilevel Cell (SMC) with Increased Ratio of Number of Levels to Number of Sources and Switches”; Iranian Conf. on Renewable Energy & Distributed Generation 2019, 1-6.
  8. [8] Shi, S.; Wang, X.; Zheng, S.; Zhang, Y.; Lu, D. “A New Diode-Clamped Multilevel Inverter with Balance Voltages of DC Capacitors”; IEEE Trans. Energy Convers. 2018, 33, 4, 2220-2228.
  9. [9] Perez, M. A.; Bernet, S.; Rodriguez, J.; Kouro, S.; Lizana, R. “Circuit Topologies, Modeling, Control Schemes, and Applications of Modular Multilevel Converters”; IEEE Trans. Power Electron. 2015, 30, 4-17.
  10. Gandomi, A. A.; Saeidabadi, S.; Hosseini, S. H.; “A High Step Up Flying Capacitor Inverter with the Voltage Balancing Control Method”; The 8th Power Electronics, Drive Systems & Technologies Conf. 2017, 55-60.
  11. Dargahi, V.; Sadigh, A. K.; Abarzadeh, M.; Eskandari, S.; Corzine, K. A. “A New Family of Modular Multilevel Converter Based on Modified Flying-Capacitor Multicell Converters”; IEEE Trans. Power Electron. 2014, 30, 138-147.
  12. Alishah, R. S.; Hosseini, S. H.; Babaei, E.; Sabahi, M.; “A New General Multilevel Converter Topology Based On Cascaded Connection of Submultilevel Units With Reduced Switching Components, DC Sources, and Blocked Voltage by Switches”; IEEE Trans. Ind. Electron. 2016, 63, 11, 7157-7164.
  13. Babaei, E.; Alilu, S.; Laali, S. “A New General Topology for Cascaded Multilevel Inverters with Reduced Number of Components Based on Developed H-Bridge”; IEEE Trans. Ind. Electron. 2013, 61, 3932-3939.
  14. Alishah, R. S.; Hosseini, S. H.; Babaei, E.; Sabahi, M.; Gharehpetian, G. B. “New High Step-Up Multilevel Converter Topology with Self-Voltage Balancing Ability and Its Optimization Analysis”; IEEE Trans. Ind. Electron. 2017, 64, 7060-7070.
  15. Babaei E.; Gowgani, S. S.; “Hybrid Multilevel Inverter Using Switched Capacitor Units”; IEEE Trans. Ind. Electron. 2013, 61, 9, 4614-4621.
  16. Barzegarkhoo, R.; Moradzadeh, M.; Zamiri, E.; Kojabadi, H. M.; Blaabjerg, F. “A New Boost Switched-Capacitor Multilevel Converter with Reduced Circuit Devices”; IEEE Trans. Power Electron. 2017, 33, 6738-6754.
  17. Karimi, M.; Kargar, P.; Varesi, K. “Two Novel Switched-Capacitor Based Multi-Level Inverter Topologies”; Int. Power System Conf. (PSC) 2019, 391-396.
  18. Roy, T.; Sadhu, P. K.; Dasgupta, A. “Cross-Switched Multilevel Inverter Using Novel Switched Capacitor Converters”; IEEE Trans. Ind. Electron. 2019, 66, 8521-8532.
  19. Ye, Y.; Cheng, K. W. E.; Liu, J.; Ding, K. “A Step-Up Switched-Capacitor Multilevel Inverter with Self-Voltage Balancing”; IEEE Trans. Ind. Electron. 2014, 61, 6672-6680.
  20. Deliri, S.; Varesi, K.; Siwakoti, Y. P.; Blaabjerg, F. “Generalized Diamond‐Type Single DC‐Source Switched‐Capacitor Based Multilevel Inverter with Step‐Up and Natural Voltage Balancing Capabilities”; IET Power Electron. 2021, 14, 1208-1218.
  21. Kargar, P.; Karimi, M.; Varesi, K.; “A Novel Boost Switched-Capacitor Based Multi-Level Inverter Structure”; 11th Power Electronics, Drive Systems, and Technologies Conf. 2020, 1-6.
  22. Karimi, M.; Kargar, P.; Varesi, K.; “A Novel High-Gain Switched-Capacitor Based 11-Level Inverter Topology”; Int. Power System Conf. 2019, 404-409.
  23. Karimi, M.; Kargar, P.; Varesi, K.; Lee, S. S.; “A 21-Level Boost Inverter with Limited Inrush-Current of Capacitors Suitable for AC Microgrids”; 11th Smart Grid Conf. 2021, 1-5.
  24. Zeng, J.; Lin, W.; Liu, J. “Switched-Capacitor-Based Active-Neutral-Point-Clamped Seven-Level Inverter with Natural Balance and Boost Ability”; IEEE Access 2019, 7, 126889-126896.
  25. Lee, S. S.; Lim, C. S.; Siwakoti, Y. P.; Lee, K.-B. “Hybrid 7-Level Boost Active-Neutral-Point-Clamped (H-7L-BANPC) Inverter”; IEEE Circuits Syst. II: Exp. Briefs 2019, 67, 2044-2048.
  26. Sheng W.; Ge, Q. “A Novel Seven-Level ANPC Converter Topology and Its Commutating Strategies”; IEEE Trans. Power Electron. 2017, 33, 7496-7509.
  27. Lee, S. S.; Lee, K. B. “Dual-T-Type Seven-Level Boost Active-Neutral-Point-Clamped Inverter”; IEEE Trans. Power Electron. 2019, 34, 6031-6035.
  28. Siddique, M. D.; Mekhilef, S.; Shah, N. M.; Ali, J. S. M.; Blaabjerg, F. “A New Switched Capacitor 7L Inverter with Triple Voltage Gain and Low Voltage Stress”; IEEE Circuits Syst. II: Exp. Briefs 2019, 67, 1294-1298.
  29. Liu, J.; Zhu, X.; Zeng, J. “A Seven-Level Inverter with Self-Balancing and Low-Voltage Stress”; IEEE J. Emerg. Sel. Top. Power Electron. 2018, 8, 685-696.
  30. Lee, S. S. “A Single-Phase Single-Source 7-Level Inverter with Triple Voltage Boosting Gain”; IEEE Access 2018, 6, 30005-30011.
  31. Karimi, M.; Kargar, P.; Varesi, K. “An Extendable Asymmetric Boost Multi‐Level Inverter with Self‐Balanced Capacitors”; Int. J. Circuit Theory (In Press).
  32. Karimi, M.; Kargar, P.; Varesi, K.; Padmanaban, S. “Power Quality Improvement by A Double-Source Multilevel Inverter with Reduced Device and Standing Voltage on Switches”; Book Title: Power Quality in Modern Power Systems: Elsevier, 2021, 245-282.