مروری بر فناوری‌های ذخیره‌سازی انرژی دارای کاربرد در پهبادها و زیردریایی‌ها

نوع مقاله : قدرت - الکترونیک قدرت

نویسندگان

1 دانشگاه جامع امام حسین (ع)، تهران ، ایران

2 دانشگاه شاهد ، تهران، ایران

چکیده

یکی از عوامل اصلی در طراحی پهپادها و زیردریایی‌ها، انتخاب مناسب وسیله ذخیره‌سازی انرژی الکتریکی به‌عنوان منبع انرژی سامانه‌های پیشرانآن‌ها است. این مقاله مروری به فناوری‌های ذخیره‌سازی انرژی، اعم از باتری یا پیل سوختی که در صنایع پهبادی و زیردریایی قابل استفاده هستند، می‌پردازد. باتری­ها به دلیل وزن و فضای اشغال کمتر کاربرد بیشتری در پهبادها دارند و می­توانند به‌عنوان منبع تغذیه اصلی یا ثانویه عمل کنند. در میان ترکیبات شیمیایی مختلف، باتری­های لیتیوم یون و پلیمر، به‌عنوان رایج­ترین فناوری­های باتری شناخته می­شوند که چگالی انرژی بالاتری دارند. هر چند چگالی انرژی پیل­های سوختی در مقایسه با باتری­ها بسیار بیشتر بوده و مداومت و ارتفاع پروازی را افزایش می­دهد ولی به علت قیمت و حجم زیاد، هنوز در صنعت پهبادی متداول نشده­اند. همین ویژگی پیل­های سوختی باعث شده است تا ازآن‌ها به‌عنوان منبع انرژی در فناوری پیشرانه مستقل از هوای زیردریایی­ها استفاده شود. همچنین در خصوص پهبادها، تغییرات شدید دمایی می­تواند موجب کاهش بازده عملکردی و طول عمر باتری و حتی پیل سوختی شود. برای افت دما که ناشی از افزایش ارتفاع پروازی است، عایق­بندی باتری و برای افزایش دما که ناشی از جریان کشی بالا می­باشد، سامانه­های مدیریت حرارت ارائه شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Review of Energy Storage Technologies Applicable in Drones and Submarines

نویسندگان [English]

  • Saeid Zamanian 1
  • seyed mohammad sadeghzadeh 2
1 Imam Hossein University (AS), Tehran, Iran
2 Shahid University, Tehran, Iran
چکیده [English]

One of the main factors in designing drones and submarines is the appropriate choice of an electrical energy storage device as the energy source of their propulsion systems. This review paper addresses the energy storage technologies, whether battery or fuel cell, applicable in drone and submarine industries. Batteries are widely used in drones due to their lower weight and occupation space and can act as a primary or secondary power supply. Among various chemical compounds, lithium-ion and lithium polymer batteries are the most common battery technologies with a higher energy density. Although the energy density of fuel cells is much higher than that of batteries and increases flight endurance and altitude, they are not yet common in the drone industry due to the high price and volume. This feature of fuel cells has led to their usage as an energy source in the air-independent propulsion technology of submarines. Also, extreme temperature variations for drones can reduce the efficiency and lifetime of batteries and even fuel cells. Battery insulation is provided for temperature drop due to an increase in altitude, and heat management systems are provided for temperature increase due to high current flow.

کلیدواژه‌ها [English]

  • Drone
  • Submarine
  • Battery
  • Fuel Cell
  • Air-Independent Propulsion

Smiley face

  1. [1] Lucchese, F. C.; Canha, L. N.; Brignol, W. S.; Ragnel, C. A. “A Review on Energy Storage Systems and Military Applications”; Fifty fifth Int. Universities Power Eng. Conf. 2020, 1-5.
  2. [2] Jha, A. R. “Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications”; Boca Raton, CRC Press 2012.
  3. [3] Townsend, A.; Jiya, I. N.; Martinson, C. “A Comprehensive Review of Energy Sources for Unmanned Aerial Vehicles, their Shortfalls and Opportunities for Improvements”; Heliyon, 2020, 6, 1-9.
  4. [4] Leuchter, J.; Zobaa, A. F. “Batteries Investigations of Small Unmanned Aircraft Vehicles”; 8th IET Int. Conf. Power Electron., Machines and Drives 2016, 1-6.
  5. [5] Kindler, A.; Matthies, L. “High Specific Energy and Specific Power Aluminum/Air Battery for Micro Air Vehicles”; Int. Soc. Opt. Photonics 2014, 9083, 1-11.
  6. [6] Naimer, N.; Koretz, B.; Putt, R. “Zinc-Air Batteries for UAVs and MAVs”; Electr. Fuel Corporation 2002, 1-4.
  7. [7] Kainthla, R.; Coffey, B. “Long Life, High Energy Silver/Zinc Batteries”; NASA Aerospace Workshop, 2003.
  8. [8] Burke, E. D. “Li-ion Intelli-Pack Battery: Smart, High Energy and Safe Battery for Mission and Safety Critical Aerospace Platforms”; AIAA Propulsion and Energy 2019, 4145.
  9. [9] Nguyen, H. V.; Maurice, M. K. “PSCR 2020_Innovating on Drone Technology to Support First Responder Missions”; PSCR Stakeholder Meeting, 2020, 1-50.
  10. Gwon, H. R.; Kim, W. B.; Lee, K. W.; Kim, D.W. “Development of Hybrid Gasoline-Battery Propulsion System for Multi-Copter Platform”; Proc. 31st Congress of the Int. Council of the Aeronautical Sci. 2018, 1-4.
  11. Reinhardt, K. C.; Lamp, T. R.; Geis, J. W. “Solar-Powered Unmanned Aerial Vehicles”; Proc. 31st Intersociety Energy Conversion Eng. Conf. 1996, 41-46.
  12. Romeo, G.; Frulla, G; Cestino, E. “Design of a High-Altitude Long-Endurance Solar-Powered Unmanned Air Vehicle for Multi-Payload and Operations”; J. Aerospace Eng. 2001, 221, 199-216.
  13. Jung, S.; Jo, Y.; Kim, Y. J. “Aerial Surveillance with Low-Altitude Long-Endurance Tethered Multirotor UAVs Using Photovoltaic Power Management System”; Energies, 2019, 12, 1323.
  14. “Tactical drone, powered by solar panels and hydrogen fuel cell, flies 24h”; https://www.flightglobal.com/military-uavs/tactical-drone-powered-by-solar-panels-and-hydrogen-fuel-cell-flies-24h/143358.article.
  15. Dudek, M.; Tomczyk, P.; Wygonik, P. “Hybrid Fuel Cell – Battery System as a Main Power Unit for Small Unmanned Aerial Vehicles (UAV)”; Int. J. Electrochem. Sci. 2013, 8, 8442-8463.
  16. Stroman, R. O.; Kellogg, J. C.; Swider-Lyons, K. E., “Testing of a PEM Fuel Cell System for Small UAV Propulsion”; Power 2000, 60, 1-4.
  17. Bradley, T.; Moffitt, B.; Fuller, T. “Design Studies for Hydrogen Fuel Cell Powered Unmanned Aerial Vehicles”; 26th AIAA Appl. Aerodynamics Conf. 2008, 5413.
  18. Bradley, T. H.; Moffitt, B. A.; Fuller, T. F. “Comparison of Design Methods for Fuel-Cell-Powered Unmanned Aerial Vehicles”; J. Aircraft 2009, 46, 1945-1956.
  19. Dudek, M.; Lis, B.; Raźniak, A.; Krauz, M. “Selected Aspects of Designing Modular PEMFC Stacks as Power Sources for Unmanned Aerial Vehicles”; Appl. Sci. 2021, 11, 675.
  20. Baik, K. D.; Yang, S. H. “Improving Open-Cathode Polymer Electrolyte Membrane Fuel Cell Performance Using Multi-Hole Separators”; Int. J. Hydrogen Rnergy 2020, 45, 9004-9009.
  21. Rodríguez-Castellanos, A.; Díaz-Bernabé, J. L. “Development and Applications of Portable Systems Based on Conventional PEM Fuel Cells”; Portable Hydrogen Energy Systems 2018, 91-106.
  22. Yamate, S.; Fujiwara, Y.; Tadokoro, H. “System Analysis of the Drone with FC Battery Fueled by Bio-hydrogen”; J. Japan Inst. Energy 2018, 97, 336-341.
  23. Arat, H. T.; Sürer, M. G. “Experimental Investigation of Fuel Cell Usage on An Air Vehicle’s Hybrid Propulsion System”; Int. J. Hydrogen Energy 2020, 45, 26370-26378.
  24. Lee, B.; Park, P.; Kim, K.; Kwon, S. “The Flight Test and Power Simulations of An UAV Powered by Solar Cells, A Fuel Cell and Batteries”; J. Mechanical Sci. Tech. 2014, 28, 399-405.
  25. Karunarathne, L.; Economou, J. T.; Knowles, K. “Model-based Power and Energy Management System for PEM Fuel Cell/Li-Ion Battery Driven Propulsion System”; 5th IET Int. Conf. Power Electron. Machines and Drives, 2010, 1-6.
  26. Zhang, X.; Liu, L., Dai, Y.; Lu, T. “Experimental Investigation on the Online Fuzzy Energy Management of Hybrid Fuel Cell/Battery Power System for UAVs”; Int. J. Hydrogen Energy 2018, 43, 10094-10103.
  27. Yang, C.; Moon, S.; Kim, Y. “A Fuel Cell/Battery Hybrid Power System for an Unmanned Aerial Vehicle”; J. Mechanical Sci. Tech. 2016, 30, 2379-2385.
  28. Wang, B.; Zhao, D.; Li, W.; Wang, Z. “Current Technologies and Challenges of Applying Fuel Cell Hybrid Propulsion Systems in Unmanned Aerial Vehicles”; Prog. Aerospace Sci. 2020, 116, 100620.
  29. Mobariz, K. N.; Youssef, A. M.; Abdel-Rahman, M. “Long Endurance Hybrid Fuel Cell-Battery Powered UAV”; World J. Model. Simul. 2015, 11, 69-80.
  30. Cho, S. M.; Kim, C.; Kim, K. S.; Kim, D. K. “Lightweight hydrogen storage cylinder for fuel cell propulsion systems to be applied in drones”; Int. J. Pressure Vessels and Piping, 2021, 194, 104428.
  31. “Honeywell Unveils Fuel Cell Tech for Drones”; https://doi.org/10.1016/S1464-2859(21)00494-6.
  32. “Northwest UAV, NRL Testing Hydrogen Drone Propulsion System”; https://doi.org/10.1016/S1464-2859(21) 00191-7.
  33. “DMI Hydrogen Drones for Korean Military”; https://doi.org/10.1016/S1464-2859(21)00313-8.
  34. “Korean Military to Trial Fuel Cell Vehicles And Drones, Set Up Station”; https://doi.org/10.1016/S1464-2859(20)30272-8.
  35. “SAT Long Endurance Hybrid Fuel Cell-Battery Powered UAV”; https://www.satuav.com/about-us.
  36. “Euro, Chinese Firms Link on Fuel Cell Drones”; https://doi.org/10.1016/S1464-2859(21)00075-4.
  37. “Spanish Partnership Developing Fuel Cell for Longer Drone Flights”; https://doi.org/10.1016/S1464-2859(20)30338 -2.
  38. “Intelligent Energy Fuel Cells Power Endurance Drone for US Army”; https://doi.org/10.1016/S1464-2859(20)30336-9.
  39. Tupper, E. C.; Rawson, K. J. “Basic Ship Theory”; Butterworth-Heinemann, Elsevier, 2001.
  40. Donaldson, A. J. “Submarine Power Sources for the Mission”; Naval Eng. J. 1996, 108, 129-146.
  41. Nichols, R. K.; Sincavage, S.; Mumm, H. C.; Carter, C. “Propulsion and Fuels: Disruptive Technologies for Submersible Craft Including UUVs [Jackson]”; Disruptive Tech. with Appl. Airline & Mar. Defense Ind. 2021.
  42. “SubCTech”; https://subctech.com/contact/.
  43. “Sunlight”https://www.systems-sunlight.com/product/ applications/advanced-technology/submarine-batteries/.
  44. “KSB”; http://www.ksbatteries.com/en/?page_id=33.
  45. “Kokam”; https://kokam.com/.
  46. “Epsilor”; https://www.epsilor.com/products/.
  47. Mohiuddin, H.; Morsalin, S.; Mahmud, K. “Design and Fabrication of a Prototype Submarine Using Archimedes Principle”; Int. Conf. Inf., Electron. Vision 2014, 1-6.
  48. Burch, I.; Ghiji, M.; Gamble, G.; Suendermann, B. “Lithium-Ion Battery Fire Suppression in Submarine Battery Compartments”, Proc. PACIFIC, 2019, 1-13.
  49. Eudeline, H. “Lithium Ion Batteries for Naval Applications. Nuclear or Conventional Submarines and Electric Ships”; Aes. 2000 All Electric Ship, Civil or Military, 2000, 1-6.
  50. Kim, B.; Kang, S. “An Experimental Study on the Charging/Discharging Characteristics and Safety of Lithium-Ion Battery System for Submarine Propulsion”; J. Soc. Naval Archit Korea 2021, 58, 225-233.
  51. Warner, J. T. “The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology”; Elsevier, 2015.
  52. James, M.; Grummett, J., Rowan, M.; Newman, J. “Application of Pulse Charging Techniques to Submarine Lead-Acid Batteries”; J. Power Sources 2006, 162, 878-883.
  53. McGuinness, M.; Benjamin, B. “Submarine Lead-Acid Battery Performance”; Australian Submarine Corp, 2003.
  54. Ness, C.C.; Simpson J. R. “A New Submarine Paradigm”; Naval Eng. J. 2000, 112, 143-152.
  55. Piłat, T.; Grzeczka, G.; Polak, A.; Kuryś, P. “Implementation of the Assessment Method of the Lead–Acid Battery Electrical Capacity in Submarines”; J. Mar. Eng.Tech. 2017 16, 326-330.
  56. Szymborski, J. “Lead-Acid Batteries for Use in Submarine Applications”; Proc. 2002 Workshop on Autonomous Under-water Vehicles, 2002, 11-17.
  57. Lakeman, J. B. “Gas Evolution and Performance Assessment of Submarine Lead/Acid Batteries”; J. Power Sources 1995, 53, 99-107.
  58. Mathur, P. B. “Status of Storage Batteries Development and Areas of Their Application”; Bulletin Electrochem. 1985, 1, 7-9.
  59. Kluiters, E. C.; Schmal, D.; ter Veen, W. R.; Posthumus, K. J. “Testing of a Sodium/Nickel Chloride (ZEBRA) Battery for Electric Propulsion of Ships and Vehicles”; J. Power Sources 1999, 80, 261-264.
  60. Sudworth, J. L. “The Sodium/Nickel Chloride (ZEBRA) battery”; J. Power Sources 2001, 100, 149-163.
  61. Manzoni, R.; Metzger, M.; Crugnola, G. “ZEBRA Electric Energy Storage System: From R&D to Market”; Hi. Tech. Expo–Milan 2008, 25, 28.
  62. Donaldson, A. J.; Galloway, R. C. “'Zebra' Batteries for Marine Applications”; All Electr. Ship, Civil or Military, 2000, 1-9.
  63. Balakrishnan, P. G.; Mani, N. “Batteries for Marine and Submarine Applications. Bulletin of Electrochemistry”; Bulletin of Electrochem. 1987, 3, 313-319.
  64. Giltner, L. J. “Silver-zinc Batteries in Marine Applications”; Conf. Proc. OCEANS'95 MTS/IEEE, 1995, 803-808.
  65. Imhof, P. “Silver-zinc Batteries for AUV Applications”; Proc. Workshop on Autonomous Underwater Vehicles, 2002, 35-38.
  66. Karpinski, A. P.; Makovetski, B.; Russell, S. J.; Serenyi, J. R. “Silver–Zinc: Status of Technology and Applications”; J. Power Sources 1999, 80, 53-60.
  67. Wang, B.; Li, J.; Hou, C.; Zhang, Q.; Li, Y; “Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries”; ACS Appl. Mater. Interfaces 2020, 12, 46005-46014.
  68. Kamenev, Y.; Lushina, M.; Yakovlev, V. “New Lead-Acid Battery for Submersible Vehicles”; J. Power Sources 2009, 188, 613-616.
  69. Rostami, H.; Zhiani, M.; Zamani, A. R.; Madhkhan, M. “Fuel Cells Application in Subsea Industries”; Proc. 3rd Fuel Cell Seminar of Iran, 2009, 28, 1-5.
  70. “APPLICATIONS – TRANSPORTATION | Ships: Fuel Cells”; Encyclopedia of Electrochem. Power Sources, Elsevier, 2009.
  71. Krummrich, S.; Llabrés, J. “Methanol Reformer – The Next Milestone for Fuel Cell Powered Submarines”; Int. J. Hydrogen Energy 2015, 40, 5482-5486.
  72. Ghosh, P. C.; Vasudeva, U. “Analysis of 3000 T Class Submarines Equipped with Polymer Electrolyte Fuel Cells”; Energy 2011, 36, 3138-3147.
  73. Psoma, A.; Sattler, G. “Fuel Cell Systems for Submarines: From the First Idea to Serial Production”; J. Power Sources 2002, 106, 381-383.
  74. Pein, M. “Fuel Cells Ideal for Demanding Maritime Applications”; Fuel Cells Bulletin 2012, 2012, 14-15.
  75. Das, J. N. “Fuel Cell Technologies for Defence Applications”; Energy Eng. 2017, 9-18.
  76. Brighton, D. R.; Mart, P. L.; Clark, G. A.; Rowan, M. J. M. “The Use of Fuel Cells to Enhance the Underwater Performance of Conventional Diesel Electric Submarines”; J. Power Sources 1994, 51, 375-389.
  77. Rains, D. A.; Mitchell, K. A. “Nuclear vs. Non-Nuclear Attack Submarine Powerplants”; Naval Eng. J. 1993, 105, 224-231.
  78. “Third Fuel Cell Submarine Handed to German Navy”; [Online] https://doi.org/10.1016/S1464-2859(06)71094-X
  79. Nimir, W.; Al-Othman, A.; Tawalbeh, M.; Al Makky, A.; “Approaches Towards the Development of Heteropolyacid-Based High Temperature Membranes for PEM Fuel Cells”; Int. J. Hydrogen Energy 2021.
  80. Leo, T. J.; Durango, J. A.; Navarro, E. “Exergy Analysis of PEM Fuel Cells for Marine Applications”; Energy 2010, 35, 1164-1171.
  81. Han, J.; Charpentier, J. F.; Tang, T. “State of the art of fuel cells for ship applications”; IEEE Int. Symposium. Ind. Electron. 2012, 1456-1461.
  82. de-Troya, J. J.; Alvarez, C.; Fernández-Garrido, C.; Carral, L. “Analysing the Possibilities of Using Fuel Cells in Ships”; Int. J. Hydrogen Energy 2016, 41, 2853-2866.
  83. Behling, N. H. “Fuel Cells”; Elsevier, 2016.
  84. Sattler, G. “PEFCs for Naval Ships and Submarines: Many Tasks, One Solution”; J. Power Sources 1998, 71, 144-149.
  85. Yamamoto, I.; Aoki, T.; Tsukioka, S.; Yoshida, H. “Fuel cell system of AUV "Urashima"”; Oceans' 04 MTS/IEEE Techno-Ocean'04 (IEEE Cat. No. 04CH37600), 2004, 1732-1737.
  86. Liu, Y.; Sun, Q.; Li, W.; Adair, K. R.; Li, J. “A Comprehensive Review on Recent Progress in Aluminum–Air Batteries”; Green Energy. Environ. 2017, 2, 246-277.
  87. Ding, F.; Wang, J. S.; Zhong, H.; Zhang, Q. “Metal–Air and Metal–Sulfur Batteries: Fundamentals and Applications”; CRC Press, 2016.
  88. Costa, E. F.; Souza, D. A.; Pinto, V. P.; “Prediction of Lithium-ion Battery Capacity in UAVs”; 6th Conf. Control, Decision and Inf. Tech., 2019, 1865-1869.
  89. Muharam, A.; Mostafa, T. M.; Hattori, R. “Design of Power Receiving Side in Wireless Charging System for UAV Application”; Int. Conf. Sustainable Energy Eng. Appl. 2017, 133-139.
  90. Shiau, J. K.; Ma, D. M.; Yang, P. Y.; Wang, G. F. “Design of A Solar Power Management System for An Experimental UAV”; IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1350-1360.
  91. Dündar, Ö.; Bilici, M.; Ünler, T. “Design and Performance Analyses of a Fixed Wing Battery VTOL UAV”; Eng. Sci. Tech., an Int. J. 2020, 23, 1182-1193.
  92. “Powering Unmanned Aerial Vehicles”; https://www.eaglepicher.com/markets/aviation/unmanned-aerial-vehicles/
  93. Suzuki, K. A.; Kemper F. P.; Morrison, J. R. “Automatic Battery Replacement System for UAVs: Analysis and Design”; J. Intell. Robotic Syst. 2012, 65, 563-586.
  94. Sai, P. G.; Rani, C. S.; Nelakuditi, U. R. “Implementation of Power Optimization Technique for UAVs”; Mater. Today: Proc. 2018, 5, 132-137.
  95. Masood, F.; Pitts Jr, R. A. “Comparing Hybrid Power Systems Using Vertical Take off Landing Vehicle”; IIE Annu. Conf. Proc. 2018, 587-592.
  96. Kardasz, P.; Doskocz, J.; Hejduk, M.; Wiejkut, P. “Drones and Possibilities of Their Using”; J. Civil & Environ. Eng. 2016, 6, 1-7.
  97. Hollinger, A. S.; McAnallen, D. R.; Brockett, M. T.; DeLaney, S. C. “Cylindrical Lithium-ion Structural Batteries for Drones”; Int. J. Energy Res. 2020, 44, 560-566.
  98. Patel, P “New Battery Tech Launches in Drones”; IEEE Spectr. 2018, 55, 7-9.
  99. Park, C.; Samuel, E.; Joshi, B.; Kim, T. “Supersonically Sprayed Fe2O3/C/CNT Composites for Highly Stable Li-ion Battery Anodes”; Chem. Eng. J. 2020, 395, 125018.
  100. Depcik, C.; Cassady, T.; Collicott, B.; Burugupally, S. P. “Comparison of Lithium ion Batteries, Hydrogen Fueled Combustion Engines, and A Hydrogen Fuel Cell in Powering A Small Unmanned Aerial Vehicle”; Energy Convers. Manage. 2020, 207, 112514.
  101. Puglia, F. J.; Cohen, S. H.; Hall, J. C.; Santee, S. G. “Advanced High Energy and High Power Battery Designs and Materials for UAVs, UUVs and UMVs”; SAE Tech. Paper, 2008, 1-7.
  102. Jiao, X.; Liu, Y.; Li, B.; Zhang, W. “Amorphous Phosphorus-Carbon Nanotube Hybrid Anode with Ultralong Cycle Life and High-Rate Capability for Lithium-Ion Batteries”; Carbon 2019, 148, 518-524.
  103. Gohardani, O.; Elola, M. C.; Elizetxea, C. “Potential and Prospective Implementation of Carbon Nanotubes on Next Generation Aircraft and Space Vehicles: A Review of Current and Expected Applications in Aerospace Sciences”; Progress in Aerosp. Sci. 2014, 70, 42-68.
  104. Fotouhi, A.; Auger, D. J.; O’Neill, L.; Cleaver, T. “Lithium-Sulfur Battery Technology Readiness and Applications—A Review”; Energies 2017, 10, 1937.
  105. Zhang, H.; Li, X.; Zhang, H. “Li-S and Li-O2 Batteries with High Specific Energy: Research and Development”; Switzerland, Springer, 2016.
  106. Mark, Gregory J. O. “Lithium-Sulfur Batteries”; John Wiley & Sons Ltd. 2019.
  107. Wang, X.; Zhao, X.; Ma, C.; Yang, Z. “Electrospun Carbon Nanofibers with MnS Sulfiphilic Sites as Efficient Polysulfide Barriers for High-performance Wide-Temperature-Range Li–S Batteries”; J. Mater. Chem. A, 2020, 8, 1212-1220.
  108. Reid, C.; Dobley, A.; Seymour, F. W. “Lithium-Air Battery Cell Development”; Twelfth Int. Energy Convers. Eng. Conf., 2014, 3552.
  109. Goh, S. T.; Zekavat, S. R. “All Electric Aircraft Mid-Air Recharging via Wireless Power Transfer: Battery Requirement Study”; Sixth IEEE Int. Conf. Wireless. Space. Extreme Environ., 2018, 212-217.
  110. “Integrated Computational-Experimental Development of Lithium-Air Batteries for Electric Aircraft”; [Online] https://ntrs.nasa.gov/citations/20190000487
  111. Sai, L.; Wei, Z.; Xueren, W. “The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle”; IOP Conf. series: Mater. Sci. Eng. 2017, 187, 012011.
  112. Putt, R.; Naimer, N.; Atwater, T. “Fourth-Generation Zinc-Air Batteries”; Proc. 41st Power Sources Conf. 2004, 1-4.
  113. Boukoberine, M. N.; Zia, M. F.; Benbouzid, M.; Zhou, Z. “Hybrid Fuel Cell Powered Drones Energy Management Strategy Improvement and Hydrogen Saving Using Real Flight Test Data”; Energy Convers. Manage. 2021, 236, 113987.
  114. Kim, S. J.; Lim, G. J.; Cho, J. “Drone Flight Scheduling Under Uncertainty on Battery Duration and Air Temperature”; Comput. Ind. Eng. 2018, 117, 291-302.
  115. [1] Li, N.; Liu, X.; Yu, B.; Li, L. “Study on the Environmental Adaptability of Lithium-ion Battery Powered UAV Under Extreme Temperature Conditions”; Energy 219, 119481.
  116. [2] Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K. “A Materials Perspective on Li-ion Batteries at Extreme Temperatures”; Nat. Energy 2017, 2, 1-14.
  117. [3] Tikhomirov, A. ; Lesins, G.; Drummond, J. R. “Drone Measurements of Surface-based Winter Temperature Inversions in the High Arctic at Eureka”; Atmospheric Measurement Techniques 2021, 14, 7123-7145.
  118. [4] Ma, Y.; Chiang, S. W.; Chu, X.; Li, J.; “Thermal Design and Optimization of Lithium ion Batteries for Unmanned Aerial Vehicles”; Energy Storage 2019, 1, 1-11.
  119. [5] “Thermal Behaviour of Lithium-ion Batteries and the Implications on Submarine System Design”; [Online] http://resolver.tudelft.nl/uuid:f102aa75-fa6a-48d2-83c9-92c9e632ff6a
  120. [6] Kim, J.; Choi, Y.; Jeon, S.; Kang, J. “Optrone: Maximizing Performance and Energy Resources of Drone Batteries”; IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 2020, 39, 3931-3943.
  121. [7] Wang, J.; Jia, R.; Liang, J.; She, C.; Xu, Y. P. “Evaluation of A Small Drone Performance Using Fuel Cell and Battery; Constraint and Mission Analyzes”; Energy Reports 2021, 7, 9108-9121.
  122. [8] Zakhvatkin, L.; Schechter, A.; Buri, E.; Avrahami, I. “Edge Cooling of a Fuel Cell during Aerial Missions by Ambient Air”; Micromachines 2021, 12, 1432.
  123. [9] Roh, C. W.; Choi, J.; Lee, H. “Hydrophilic-Hydrophobic Dual Catalyst Layers for Proton Exchange Membrane Fuel Cells Under Low Humidity”; Electrochem. Commun. 2018, 97, 105-109.
  124. Gong, A.; Verstraete, D. “Fuel Cell Propulsion in Small Fixed-Wing Unmanned Aerial Vehicles: Current Status and Research Needs”; Int. J. Hydrogen Energy 2017, 42, 21311-21333.
  125. Rostami, M.; Dehghan M. M.; Afshari, E. “Performance Evaluation of Two Proton Exchange Membrane and Alkaline Fuel Cells for Use in UAVs by Investigating the Effect of Operating Altitude”; Int. J. Energy Res. 2021, 1-16.