مروری بر فناوری‌های ذخیره‌سازی انرژی دارای کاربرد در پهبادها و زیردریایی‌ها

نوع مقاله : قدرت - الکترونیک قدرت

نویسندگان

1 دانشگاه جامع امام حسین (ع)، تهران ، ایران

2 دانشگاه شاهد ، تهران، ایران

چکیده

یکی از عوامل اصلی در طراحی پهپادها و زیردریایی‌ها، انتخاب مناسب وسیله ذخیره‌سازی انرژی الکتریکی به‌عنوان منبع انرژی سامانه‌های پیشرانآن‌ها است. این مقاله مروری به فناوری‌های ذخیره‌سازی انرژی، اعم از باتری یا پیل سوختی که در صنایع پهبادی و زیردریایی قابل استفاده هستند، می‌پردازد. باتری­ها به دلیل وزن و فضای اشغال کمتر کاربرد بیشتری در پهبادها دارند و می­توانند به‌عنوان منبع تغذیه اصلی یا ثانویه عمل کنند. در میان ترکیبات شیمیایی مختلف، باتری­های لیتیوم یون و پلیمر، به‌عنوان رایج­ترین فناوری­های باتری شناخته می­شوند که چگالی انرژی بالاتری دارند. هر چند چگالی انرژی پیل­های سوختی در مقایسه با باتری­ها بسیار بیشتر بوده و مداومت و ارتفاع پروازی را افزایش می­دهد ولی به علت قیمت و حجم زیاد، هنوز در صنعت پهبادی متداول نشده­اند. همین ویژگی پیل­های سوختی باعث شده است تا ازآن‌ها به‌عنوان منبع انرژی در فناوری پیشرانه مستقل از هوای زیردریایی­ها استفاده شود. همچنین در خصوص پهبادها، تغییرات شدید دمایی می­تواند موجب کاهش بازده عملکردی و طول عمر باتری و حتی پیل سوختی شود. برای افت دما که ناشی از افزایش ارتفاع پروازی است، عایق­بندی باتری و برای افزایش دما که ناشی از جریان کشی بالا می­باشد، سامانه­های مدیریت حرارت ارائه شده است.

کلیدواژه‌ها

موضوعات


Smiley face

  1. [1] Lucchese, F. C.; Canha, L. N.; Brignol, W. S.; Ragnel, C. A. “A Review on Energy Storage Systems and Military Applications”; Fifty fifth Int. Universities Power Eng. Conf. 2020, 1-5.
  2. [2] Jha, A. R. “Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications”; Boca Raton, CRC Press 2012.
  3. [3] Townsend, A.; Jiya, I. N.; Martinson, C. “A Comprehensive Review of Energy Sources for Unmanned Aerial Vehicles, their Shortfalls and Opportunities for Improvements”; Heliyon, 2020, 6, 1-9.
  4. [4] Leuchter, J.; Zobaa, A. F. “Batteries Investigations of Small Unmanned Aircraft Vehicles”; 8th IET Int. Conf. Power Electron., Machines and Drives 2016, 1-6.
  5. [5] Kindler, A.; Matthies, L. “High Specific Energy and Specific Power Aluminum/Air Battery for Micro Air Vehicles”; Int. Soc. Opt. Photonics 2014, 9083, 1-11.
  6. [6] Naimer, N.; Koretz, B.; Putt, R. “Zinc-Air Batteries for UAVs and MAVs”; Electr. Fuel Corporation 2002, 1-4.
  7. [7] Kainthla, R.; Coffey, B. “Long Life, High Energy Silver/Zinc Batteries”; NASA Aerospace Workshop, 2003.
  8. [8] Burke, E. D. “Li-ion Intelli-Pack Battery: Smart, High Energy and Safe Battery for Mission and Safety Critical Aerospace Platforms”; AIAA Propulsion and Energy 2019, 4145.
  9. [9] Nguyen, H. V.; Maurice, M. K. “PSCR 2020_Innovating on Drone Technology to Support First Responder Missions”; PSCR Stakeholder Meeting, 2020, 1-50.
  10. Gwon, H. R.; Kim, W. B.; Lee, K. W.; Kim, D.W. “Development of Hybrid Gasoline-Battery Propulsion System for Multi-Copter Platform”; Proc. 31st Congress of the Int. Council of the Aeronautical Sci. 2018, 1-4.
  11. Reinhardt, K. C.; Lamp, T. R.; Geis, J. W. “Solar-Powered Unmanned Aerial Vehicles”; Proc. 31st Intersociety Energy Conversion Eng. Conf. 1996, 41-46.
  12. Romeo, G.; Frulla, G; Cestino, E. “Design of a High-Altitude Long-Endurance Solar-Powered Unmanned Air Vehicle for Multi-Payload and Operations”; J. Aerospace Eng. 2001, 221, 199-216.
  13. Jung, S.; Jo, Y.; Kim, Y. J. “Aerial Surveillance with Low-Altitude Long-Endurance Tethered Multirotor UAVs Using Photovoltaic Power Management System”; Energies, 2019, 12, 1323.
  14. “Tactical drone, powered by solar panels and hydrogen fuel cell, flies 24h”; https://www.flightglobal.com/military-uavs/tactical-drone-powered-by-solar-panels-and-hydrogen-fuel-cell-flies-24h/143358.article.
  15. Dudek, M.; Tomczyk, P.; Wygonik, P. “Hybrid Fuel Cell – Battery System as a Main Power Unit for Small Unmanned Aerial Vehicles (UAV)”; Int. J. Electrochem. Sci. 2013, 8, 8442-8463.
  16. Stroman, R. O.; Kellogg, J. C.; Swider-Lyons, K. E., “Testing of a PEM Fuel Cell System for Small UAV Propulsion”; Power 2000, 60, 1-4.
  17. Bradley, T.; Moffitt, B.; Fuller, T. “Design Studies for Hydrogen Fuel Cell Powered Unmanned Aerial Vehicles”; 26th AIAA Appl. Aerodynamics Conf. 2008, 5413.
  18. Bradley, T. H.; Moffitt, B. A.; Fuller, T. F. “Comparison of Design Methods for Fuel-Cell-Powered Unmanned Aerial Vehicles”; J. Aircraft 2009, 46, 1945-1956.
  19. Dudek, M.; Lis, B.; Raźniak, A.; Krauz, M. “Selected Aspects of Designing Modular PEMFC Stacks as Power Sources for Unmanned Aerial Vehicles”; Appl. Sci. 2021, 11, 675.
  20. Baik, K. D.; Yang, S. H. “Improving Open-Cathode Polymer Electrolyte Membrane Fuel Cell Performance Using Multi-Hole Separators”; Int. J. Hydrogen Rnergy 2020, 45, 9004-9009.
  21. Rodríguez-Castellanos, A.; Díaz-Bernabé, J. L. “Development and Applications of Portable Systems Based on Conventional PEM Fuel Cells”; Portable Hydrogen Energy Systems 2018, 91-106.
  22. Yamate, S.; Fujiwara, Y.; Tadokoro, H. “System Analysis of the Drone with FC Battery Fueled by Bio-hydrogen”; J. Japan Inst. Energy 2018, 97, 336-341.
  23. Arat, H. T.; Sürer, M. G. “Experimental Investigation of Fuel Cell Usage on An Air Vehicle’s Hybrid Propulsion System”; Int. J. Hydrogen Energy 2020, 45, 26370-26378.
  24. Lee, B.; Park, P.; Kim, K.; Kwon, S. “The Flight Test and Power Simulations of An UAV Powered by Solar Cells, A Fuel Cell and Batteries”; J. Mechanical Sci. Tech. 2014, 28, 399-405.
  25. Karunarathne, L.; Economou, J. T.; Knowles, K. “Model-based Power and Energy Management System for PEM Fuel Cell/Li-Ion Battery Driven Propulsion System”; 5th IET Int. Conf. Power Electron. Machines and Drives, 2010, 1-6.
  26. Zhang, X.; Liu, L., Dai, Y.; Lu, T. “Experimental Investigation on the Online Fuzzy Energy Management of Hybrid Fuel Cell/Battery Power System for UAVs”; Int. J. Hydrogen Energy 2018, 43, 10094-10103.
  27. Yang, C.; Moon, S.; Kim, Y. “A Fuel Cell/Battery Hybrid Power System for an Unmanned Aerial Vehicle”; J. Mechanical Sci. Tech. 2016, 30, 2379-2385.
  28. Wang, B.; Zhao, D.; Li, W.; Wang, Z. “Current Technologies and Challenges of Applying Fuel Cell Hybrid Propulsion Systems in Unmanned Aerial Vehicles”; Prog. Aerospace Sci. 2020, 116, 100620.
  29. Mobariz, K. N.; Youssef, A. M.; Abdel-Rahman, M. “Long Endurance Hybrid Fuel Cell-Battery Powered UAV”; World J. Model. Simul. 2015, 11, 69-80.
  30. Cho, S. M.; Kim, C.; Kim, K. S.; Kim, D. K. “Lightweight hydrogen storage cylinder for fuel cell propulsion systems to be applied in drones”; Int. J. Pressure Vessels and Piping, 2021, 194, 104428.
  31. “Honeywell Unveils Fuel Cell Tech for Drones”; https://doi.org/10.1016/S1464-2859(21)00494-6.
  32. “Northwest UAV, NRL Testing Hydrogen Drone Propulsion System”; https://doi.org/10.1016/S1464-2859(21) 00191-7.
  33. “DMI Hydrogen Drones for Korean Military”; https://doi.org/10.1016/S1464-2859(21)00313-8.
  34. “Korean Military to Trial Fuel Cell Vehicles And Drones, Set Up Station”; https://doi.org/10.1016/S1464-2859(20)30272-8.
  35. “SAT Long Endurance Hybrid Fuel Cell-Battery Powered UAV”; https://www.satuav.com/about-us.
  36. “Euro, Chinese Firms Link on Fuel Cell Drones”; https://doi.org/10.1016/S1464-2859(21)00075-4.
  37. “Spanish Partnership Developing Fuel Cell for Longer Drone Flights”; https://doi.org/10.1016/S1464-2859(20)30338 -2.
  38. “Intelligent Energy Fuel Cells Power Endurance Drone for US Army”; https://doi.org/10.1016/S1464-2859(20)30336-9.
  39. Tupper, E. C.; Rawson, K. J. “Basic Ship Theory”; Butterworth-Heinemann, Elsevier, 2001.
  40. Donaldson, A. J. “Submarine Power Sources for the Mission”; Naval Eng. J. 1996, 108, 129-146.
  41. Nichols, R. K.; Sincavage, S.; Mumm, H. C.; Carter, C. “Propulsion and Fuels: Disruptive Technologies for Submersible Craft Including UUVs [Jackson]”; Disruptive Tech. with Appl. Airline & Mar. Defense Ind. 2021.
  42. “SubCTech”; https://subctech.com/contact/.
  43. “Sunlight”https://www.systems-sunlight.com/product/ applications/advanced-technology/submarine-batteries/.
  44. “KSB”; http://www.ksbatteries.com/en/?page_id=33.
  45. “Kokam”; https://kokam.com/.
  46. “Epsilor”; https://www.epsilor.com/products/.
  47. Mohiuddin, H.; Morsalin, S.; Mahmud, K. “Design and Fabrication of a Prototype Submarine Using Archimedes Principle”; Int. Conf. Inf., Electron. Vision 2014, 1-6.
  48. Burch, I.; Ghiji, M.; Gamble, G.; Suendermann, B. “Lithium-Ion Battery Fire Suppression in Submarine Battery Compartments”, Proc. PACIFIC, 2019, 1-13.
  49. Eudeline, H. “Lithium Ion Batteries for Naval Applications. Nuclear or Conventional Submarines and Electric Ships”; Aes. 2000 All Electric Ship, Civil or Military, 2000, 1-6.
  50. Kim, B.; Kang, S. “An Experimental Study on the Charging/Discharging Characteristics and Safety of Lithium-Ion Battery System for Submarine Propulsion”; J. Soc. Naval Archit Korea 2021, 58, 225-233.
  51. Warner, J. T. “The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology”; Elsevier, 2015.
  52. James, M.; Grummett, J., Rowan, M.; Newman, J. “Application of Pulse Charging Techniques to Submarine Lead-Acid Batteries”; J. Power Sources 2006, 162, 878-883.
  53. McGuinness, M.; Benjamin, B. “Submarine Lead-Acid Battery Performance”; Australian Submarine Corp, 2003.
  54. Ness, C.C.; Simpson J. R. “A New Submarine Paradigm”; Naval Eng. J. 2000, 112, 143-152.
  55. Piłat, T.; Grzeczka, G.; Polak, A.; Kuryś, P. “Implementation of the Assessment Method of the Lead–Acid Battery Electrical Capacity in Submarines”; J. Mar. Eng.Tech. 2017 16, 326-330.
  56. Szymborski, J. “Lead-Acid Batteries for Use in Submarine Applications”; Proc. 2002 Workshop on Autonomous Under-water Vehicles, 2002, 11-17.
  57. Lakeman, J. B. “Gas Evolution and Performance Assessment of Submarine Lead/Acid Batteries”; J. Power Sources 1995, 53, 99-107.
  58. Mathur, P. B. “Status of Storage Batteries Development and Areas of Their Application”; Bulletin Electrochem. 1985, 1, 7-9.
  59. Kluiters, E. C.; Schmal, D.; ter Veen, W. R.; Posthumus, K. J. “Testing of a Sodium/Nickel Chloride (ZEBRA) Battery for Electric Propulsion of Ships and Vehicles”; J. Power Sources 1999, 80, 261-264.
  60. Sudworth, J. L. “The Sodium/Nickel Chloride (ZEBRA) battery”; J. Power Sources 2001, 100, 149-163.
  61. Manzoni, R.; Metzger, M.; Crugnola, G. “ZEBRA Electric Energy Storage System: From R&D to Market”; Hi. Tech. Expo–Milan 2008, 25, 28.
  62. Donaldson, A. J.; Galloway, R. C. “'Zebra' Batteries for Marine Applications”; All Electr. Ship, Civil or Military, 2000, 1-9.
  63. Balakrishnan, P. G.; Mani, N. “Batteries for Marine and Submarine Applications. Bulletin of Electrochemistry”; Bulletin of Electrochem. 1987, 3, 313-319.
  64. Giltner, L. J. “Silver-zinc Batteries in Marine Applications”; Conf. Proc. OCEANS'95 MTS/IEEE, 1995, 803-808.
  65. Imhof, P. “Silver-zinc Batteries for AUV Applications”; Proc. Workshop on Autonomous Underwater Vehicles, 2002, 35-38.
  66. Karpinski, A. P.; Makovetski, B.; Russell, S. J.; Serenyi, J. R. “Silver–Zinc: Status of Technology and Applications”; J. Power Sources 1999, 80, 53-60.
  67. Wang, B.; Li, J.; Hou, C.; Zhang, Q.; Li, Y; “Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries”; ACS Appl. Mater. Interfaces 2020, 12, 46005-46014.
  68. Kamenev, Y.; Lushina, M.; Yakovlev, V. “New Lead-Acid Battery for Submersible Vehicles”; J. Power Sources 2009, 188, 613-616.
  69. Rostami, H.; Zhiani, M.; Zamani, A. R.; Madhkhan, M. “Fuel Cells Application in Subsea Industries”; Proc. 3rd Fuel Cell Seminar of Iran, 2009, 28, 1-5.
  70. “APPLICATIONS – TRANSPORTATION | Ships: Fuel Cells”; Encyclopedia of Electrochem. Power Sources, Elsevier, 2009.
  71. Krummrich, S.; Llabrés, J. “Methanol Reformer – The Next Milestone for Fuel Cell Powered Submarines”; Int. J. Hydrogen Energy 2015, 40, 5482-5486.
  72. Ghosh, P. C.; Vasudeva, U. “Analysis of 3000 T Class Submarines Equipped with Polymer Electrolyte Fuel Cells”; Energy 2011, 36, 3138-3147.
  73. Psoma, A.; Sattler, G. “Fuel Cell Systems for Submarines: From the First Idea to Serial Production”; J. Power Sources 2002, 106, 381-383.
  74. Pein, M. “Fuel Cells Ideal for Demanding Maritime Applications”; Fuel Cells Bulletin 2012, 2012, 14-15.
  75. Das, J. N. “Fuel Cell Technologies for Defence Applications”; Energy Eng. 2017, 9-18.
  76. Brighton, D. R.; Mart, P. L.; Clark, G. A.; Rowan, M. J. M. “The Use of Fuel Cells to Enhance the Underwater Performance of Conventional Diesel Electric Submarines”; J. Power Sources 1994, 51, 375-389.
  77. Rains, D. A.; Mitchell, K. A. “Nuclear vs. Non-Nuclear Attack Submarine Powerplants”; Naval Eng. J. 1993, 105, 224-231.
  78. “Third Fuel Cell Submarine Handed to German Navy”; [Online] https://doi.org/10.1016/S1464-2859(06)71094-X
  79. Nimir, W.; Al-Othman, A.; Tawalbeh, M.; Al Makky, A.; “Approaches Towards the Development of Heteropolyacid-Based High Temperature Membranes for PEM Fuel Cells”; Int. J. Hydrogen Energy 2021.
  80. Leo, T. J.; Durango, J. A.; Navarro, E. “Exergy Analysis of PEM Fuel Cells for Marine Applications”; Energy 2010, 35, 1164-1171.
  81. Han, J.; Charpentier, J. F.; Tang, T. “State of the art of fuel cells for ship applications”; IEEE Int. Symposium. Ind. Electron. 2012, 1456-1461.
  82. de-Troya, J. J.; Alvarez, C.; Fernández-Garrido, C.; Carral, L. “Analysing the Possibilities of Using Fuel Cells in Ships”; Int. J. Hydrogen Energy 2016, 41, 2853-2866.
  83. Behling, N. H. “Fuel Cells”; Elsevier, 2016.
  84. Sattler, G. “PEFCs for Naval Ships and Submarines: Many Tasks, One Solution”; J. Power Sources 1998, 71, 144-149.
  85. Yamamoto, I.; Aoki, T.; Tsukioka, S.; Yoshida, H. “Fuel cell system of AUV "Urashima"”; Oceans' 04 MTS/IEEE Techno-Ocean'04 (IEEE Cat. No. 04CH37600), 2004, 1732-1737.
  86. Liu, Y.; Sun, Q.; Li, W.; Adair, K. R.; Li, J. “A Comprehensive Review on Recent Progress in Aluminum–Air Batteries”; Green Energy. Environ. 2017, 2, 246-277.
  87. Ding, F.; Wang, J. S.; Zhong, H.; Zhang, Q. “Metal–Air and Metal–Sulfur Batteries: Fundamentals and Applications”; CRC Press, 2016.
  88. Costa, E. F.; Souza, D. A.; Pinto, V. P.; “Prediction of Lithium-ion Battery Capacity in UAVs”; 6th Conf. Control, Decision and Inf. Tech., 2019, 1865-1869.
  89. Muharam, A.; Mostafa, T. M.; Hattori, R. “Design of Power Receiving Side in Wireless Charging System for UAV Application”; Int. Conf. Sustainable Energy Eng. Appl. 2017, 133-139.
  90. Shiau, J. K.; Ma, D. M.; Yang, P. Y.; Wang, G. F. “Design of A Solar Power Management System for An Experimental UAV”; IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1350-1360.
  91. Dündar, Ö.; Bilici, M.; Ünler, T. “Design and Performance Analyses of a Fixed Wing Battery VTOL UAV”; Eng. Sci. Tech., an Int. J. 2020, 23, 1182-1193.
  92. “Powering Unmanned Aerial Vehicles”; https://www.eaglepicher.com/markets/aviation/unmanned-aerial-vehicles/
  93. Suzuki, K. A.; Kemper F. P.; Morrison, J. R. “Automatic Battery Replacement System for UAVs: Analysis and Design”; J. Intell. Robotic Syst. 2012, 65, 563-586.
  94. Sai, P. G.; Rani, C. S.; Nelakuditi, U. R. “Implementation of Power Optimization Technique for UAVs”; Mater. Today: Proc. 2018, 5, 132-137.
  95. Masood, F.; Pitts Jr, R. A. “Comparing Hybrid Power Systems Using Vertical Take off Landing Vehicle”; IIE Annu. Conf. Proc. 2018, 587-592.
  96. Kardasz, P.; Doskocz, J.; Hejduk, M.; Wiejkut, P. “Drones and Possibilities of Their Using”; J. Civil & Environ. Eng. 2016, 6, 1-7.
  97. Hollinger, A. S.; McAnallen, D. R.; Brockett, M. T.; DeLaney, S. C. “Cylindrical Lithium-ion Structural Batteries for Drones”; Int. J. Energy Res. 2020, 44, 560-566.
  98. Patel, P “New Battery Tech Launches in Drones”; IEEE Spectr. 2018, 55, 7-9.
  99. Park, C.; Samuel, E.; Joshi, B.; Kim, T. “Supersonically Sprayed Fe2O3/C/CNT Composites for Highly Stable Li-ion Battery Anodes”; Chem. Eng. J. 2020, 395, 125018.
  100. Depcik, C.; Cassady, T.; Collicott, B.; Burugupally, S. P. “Comparison of Lithium ion Batteries, Hydrogen Fueled Combustion Engines, and A Hydrogen Fuel Cell in Powering A Small Unmanned Aerial Vehicle”; Energy Convers. Manage. 2020, 207, 112514.
  101. Puglia, F. J.; Cohen, S. H.; Hall, J. C.; Santee, S. G. “Advanced High Energy and High Power Battery Designs and Materials for UAVs, UUVs and UMVs”; SAE Tech. Paper, 2008, 1-7.
  102. Jiao, X.; Liu, Y.; Li, B.; Zhang, W. “Amorphous Phosphorus-Carbon Nanotube Hybrid Anode with Ultralong Cycle Life and High-Rate Capability for Lithium-Ion Batteries”; Carbon 2019, 148, 518-524.
  103. Gohardani, O.; Elola, M. C.; Elizetxea, C. “Potential and Prospective Implementation of Carbon Nanotubes on Next Generation Aircraft and Space Vehicles: A Review of Current and Expected Applications in Aerospace Sciences”; Progress in Aerosp. Sci. 2014, 70, 42-68.
  104. Fotouhi, A.; Auger, D. J.; O’Neill, L.; Cleaver, T. “Lithium-Sulfur Battery Technology Readiness and Applications—A Review”; Energies 2017, 10, 1937.
  105. Zhang, H.; Li, X.; Zhang, H. “Li-S and Li-O2 Batteries with High Specific Energy: Research and Development”; Switzerland, Springer, 2016.
  106. Mark, Gregory J. O. “Lithium-Sulfur Batteries”; John Wiley & Sons Ltd. 2019.
  107. Wang, X.; Zhao, X.; Ma, C.; Yang, Z. “Electrospun Carbon Nanofibers with MnS Sulfiphilic Sites as Efficient Polysulfide Barriers for High-performance Wide-Temperature-Range Li–S Batteries”; J. Mater. Chem. A, 2020, 8, 1212-1220.
  108. Reid, C.; Dobley, A.; Seymour, F. W. “Lithium-Air Battery Cell Development”; Twelfth Int. Energy Convers. Eng. Conf., 2014, 3552.
  109. Goh, S. T.; Zekavat, S. R. “All Electric Aircraft Mid-Air Recharging via Wireless Power Transfer: Battery Requirement Study”; Sixth IEEE Int. Conf. Wireless. Space. Extreme Environ., 2018, 212-217.
  110. “Integrated Computational-Experimental Development of Lithium-Air Batteries for Electric Aircraft”; [Online] https://ntrs.nasa.gov/citations/20190000487
  111. Sai, L.; Wei, Z.; Xueren, W. “The Development Status and Key Technologies of Solar Powered Unmanned Air Vehicle”; IOP Conf. series: Mater. Sci. Eng. 2017, 187, 012011.
  112. Putt, R.; Naimer, N.; Atwater, T. “Fourth-Generation Zinc-Air Batteries”; Proc. 41st Power Sources Conf. 2004, 1-4.
  113. Boukoberine, M. N.; Zia, M. F.; Benbouzid, M.; Zhou, Z. “Hybrid Fuel Cell Powered Drones Energy Management Strategy Improvement and Hydrogen Saving Using Real Flight Test Data”; Energy Convers. Manage. 2021, 236, 113987.
  114. Kim, S. J.; Lim, G. J.; Cho, J. “Drone Flight Scheduling Under Uncertainty on Battery Duration and Air Temperature”; Comput. Ind. Eng. 2018, 117, 291-302.
  115. [1] Li, N.; Liu, X.; Yu, B.; Li, L. “Study on the Environmental Adaptability of Lithium-ion Battery Powered UAV Under Extreme Temperature Conditions”; Energy 219, 119481.
  116. [2] Rodrigues, M. T. F.; Babu, G.; Gullapalli, H.; Kalaga, K. “A Materials Perspective on Li-ion Batteries at Extreme Temperatures”; Nat. Energy 2017, 2, 1-14.
  117. [3] Tikhomirov, A. ; Lesins, G.; Drummond, J. R. “Drone Measurements of Surface-based Winter Temperature Inversions in the High Arctic at Eureka”; Atmospheric Measurement Techniques 2021, 14, 7123-7145.
  118. [4] Ma, Y.; Chiang, S. W.; Chu, X.; Li, J.; “Thermal Design and Optimization of Lithium ion Batteries for Unmanned Aerial Vehicles”; Energy Storage 2019, 1, 1-11.
  119. [5] “Thermal Behaviour of Lithium-ion Batteries and the Implications on Submarine System Design”; [Online] http://resolver.tudelft.nl/uuid:f102aa75-fa6a-48d2-83c9-92c9e632ff6a
  120. [6] Kim, J.; Choi, Y.; Jeon, S.; Kang, J. “Optrone: Maximizing Performance and Energy Resources of Drone Batteries”; IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 2020, 39, 3931-3943.
  121. [7] Wang, J.; Jia, R.; Liang, J.; She, C.; Xu, Y. P. “Evaluation of A Small Drone Performance Using Fuel Cell and Battery; Constraint and Mission Analyzes”; Energy Reports 2021, 7, 9108-9121.
  122. [8] Zakhvatkin, L.; Schechter, A.; Buri, E.; Avrahami, I. “Edge Cooling of a Fuel Cell during Aerial Missions by Ambient Air”; Micromachines 2021, 12, 1432.
  123. [9] Roh, C. W.; Choi, J.; Lee, H. “Hydrophilic-Hydrophobic Dual Catalyst Layers for Proton Exchange Membrane Fuel Cells Under Low Humidity”; Electrochem. Commun. 2018, 97, 105-109.
  124. Gong, A.; Verstraete, D. “Fuel Cell Propulsion in Small Fixed-Wing Unmanned Aerial Vehicles: Current Status and Research Needs”; Int. J. Hydrogen Energy 2017, 42, 21311-21333.
  125. Rostami, M.; Dehghan M. M.; Afshari, E. “Performance Evaluation of Two Proton Exchange Membrane and Alkaline Fuel Cells for Use in UAVs by Investigating the Effect of Operating Altitude”; Int. J. Energy Res. 2021, 1-16.