نوع مقاله : کامپیوتر - محاسبات نرم و هوش مصنوعی
نویسندگان
1 استادیار، گروه مطالعات علم و فناوری دانشگاه فرماندهی و ستاد آجا، تهران، ایران
2 دانشیار، گروه مهندسی برق دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
The intrusion detection system (IDS) manages a massive volume of data that comprises irrelevant and redundant features, leading to more significant resource consumption, long-time training and testing procedures, and low detection rate. Hence, feature selection is a crucial phase in intrusion detection. The aim of this paper is to introduce an intersection-based strategy that optimally selects the features for classification. This feature selection involves an intersection of simultaneous mutual information based on the transductive model (MIT-MIT), Anova F-test, and genetic algorithm (GA) methods. A benchmark dataset, named NSL-KDD, is applied to evaluate the effectiveness of the proposed approach. This study includes accuracy, precision, recall, and F1 score as the evaluation metrics for IDS, which analyzes the proposed method with state-of-the-art classifiers. The evaluation results confirm that our feature selection algorithm provides more essential features for IDS to achieve high accuracy, outperforming other comparative algorithms.
کلیدواژهها [English]