تولید توان ثابت در مزارع خورشیدی با استفاده از الگوریتم کنترلی ردیابی انعطاف‌پذیر توان، به منظور ارتقاء شاخص‌های پدافندی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری ، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 استادیار، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 دانشیار، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

دسترسی گسترده به منابع انرژی در سیستم‌های فتوولتائیک، موجب شده که این نوع سیستم‌‌ها از دیدگاه پدافند غیرعامل مورد توجه قرار گرفته و بتوانند جایگزین خوبی برای سوخت‌های فسیلی در صورت وقوع شرایط خاص و غیرطبیعی باشند. از آنجا که بازده کاری سیستم‌های فتوولتائیک با تغییر زاویه تابش به شدت تغییر می‌کند، لذا نیاز به تکنیک‌های کنترلی مناسب جهت دست‌یابی به توان دلخواه، ضروری قلمداد می‌شود. الگوریتم ردیابی انعطاف‌پذیر توان یکی از تکنیک‌هایی است که بدین منظور به کار می‌رود. هدف این الگوریتم، تنظیم توان خروجی سلول خورشیدی در مقدار توان مرجع است؛ که مقدار این توان مرجع بر اساس شرایط عملیاتی و الزامات شبکه تعیین می‌شود. الگوریتم پیشنهادی پس از مشاهده و تشخیص شرایط عملیاتی، ولتاژ گام را محاسبه کرده و در نهایت ولتاژ مرجع را نیز به‌دست می‌آورد. الگوریتم‌های پیشین دارای معایبی همچون نوسانات توان، ناپایداری ناشی از تغییر شرایط محیطی و دینامیک آهسته می‌باشند. در این راستا، الگوریتم پیشنهادی معایب الگوریتم‌های قبل را برطرف می‌سازد. به‌عنوان مثال، ممکن است به‌دلیل عبور ابرها شرایط محیطی ناپایداری به‌وجود بیاید که در این وضعیت، الگوریتم پیشنهادی نه‌تنها نوسانات توان را به حداقل می‌رساند، بلکه دارای دینامیک سریع و دقت بالایی بوده و در عین حال پایداری خود را نیز حفظ می‌کند.

کلیدواژه‌ها


عنوان مقاله [English]

Constant Power Generation in Solar Farms Using Flexible Power Point Tracking Algorithm to Improve Passive Defense Indices

نویسندگان [English]

  • Seyed Hamed Kazemi 1
  • Arash Dehestani Kolagar 2
  • Mohammad Reza Alizadeh Pahlavani 3
1 PhD student, Malik Ashtar University of Technology, Tehran, Iran.
2 Assistant Professor, Malik Ashtar University of Technology, Tehran, Iran.
3 Associate Professor, Malik Ashtar University of Technology, Tehran, Iran.
چکیده [English]

The widespread access to energy sources in photovoltaic systems has made these types of systems considered from the passive defense point of view and can be an efficient alternative to fossil fuels in the event of special and abnormal conditions. Since the efficiency of photovoltaic systems changes drastically with changing the angle of radiation, the need for appropriate control techniques to achieve the desired power is considered necessary and inevitable. Flexible power point tracking algorithm is one of the techniques used for this purpose. The purpose of this algorithm is to adjust the output power of the solar cell in the reference power value. The reference power value is determined based on operating conditions and network requirements. The proposed algorithm, after observing and detecting operating conditions, calculates the step voltage and finally obtains the reference voltage. The previously proposed algorithms have disadvantages such as power fluctuations, instability due to changing environmental conditions and slow dynamics. In this regard, the proposed algorithm eliminates the disadvantages of the previous algorithms. For example, environmental conditions may be unstable due to the passage of clouds. In this situation, the proposed algorithm not only minimizes power fluctuations, but also has fast dynamics and high accuracy, while maintaining its stability.

کلیدواژه‌ها [English]

  • Network requirements
  • Flexible power point tracking
  • Operating conditions
  • Photovoltaic
  • Power Oscillations
  • Step voltage
  1.  

    1. Ghaffarpour, R.; Hashemi, Y.; Ehsan, M. “Involving Defensive Approach in Unit Commitment Scheduling and Presenting Probability Model of Plants Inaccessibility”; Adv. Defence Sci. & Technol. 2019, 5, 231-246 (In Persian).##
    2. Sajadian, S.; Ahmadi, R. “Model Predictive-Based Maximum Power Point Tracking for Grid-Tied Photovoltaic Applications Using A Z-Source Inverter”; IEEE Trans. Power Electron. 2016, 31, 7611-7620.##‏
    3. Jeon, Y. T.; Lee, H.; Kim, K. A.; Park, J. H. “Least Power Point Tracking Method for Photovoltaic Differential Power Processing Systems”; IEEE Trans. Power Electron. 2017, 32, 1941–1951.##
    4. Tousi, S. M. R.; Moradi, M. H.; Basir, N. S.; Nemati, M. “A Function Based Maximum Power Point Tracking Method for Photovoltaic Systems”; IEEE Trans. Power Electron. 2016, 31, 2120–2128.##
    5. Teng, J. H.; Huang, W. H.; Hsu, T. A.; Wang, C. Y. “Novel and Fast Maximum Power Point Tracking for Photovoltaic Generation”; IEEE Trans. Ind. Electron. 2016, 63, 4955-4966.##‏
    6. Ghasemi, M. A.; Foroushani, H. M.; Parniani, M. “Partial Shading Detection and Smooth Maximum Power Point Tracking of PV Arrays under PSC”; IEEE Trans. Power Electron. 2015, 31, 6281-6292.##‏
    7. Renaudineau, H.; Donatantonio, F.; Fontchastagner, J.; Petrone, G.; Spagnuolo, G.; Martin, J. P.; Pierfederici, S. “A PSO-Based Global MPPT Technique for Distributed PV Power Generation”; IEEE Trans. Ind. Electron. 2014, 62, 1047-1058.##‏
    8. Ricco, M.; Manganiello, P.; Monmasson, E.; Petrone, G.; Spagnuolo, G. “FPGA-Based Implementation of Dual Kalman Filter for PV MPPT Applications”; IEEE Trans. Ind. Inform. 2015, 13, 176-185.##‏
    9. Libo, W.; Zhengming, Z.; Jianzheng, L. “A Single-Stage Three-Phase Grid-Connected Photovoltaic System with Modified MPPT Method and Reactive Power Compensation”; IEEE Trans. Energy Convers. 2007, 22, 881–886.##
    10. Manganiello, P.; Ricco, M.; Monmasson, E.; Petrone, G.; Spagnuolo, G. “On-Line Optimization of the P&O MPPT Method by Means of the System Identification”; IEEE Ind. Electron. Conf. 2013, 1786-1791.##
    11. Ricco, M.; Manganiello, P.; Petrone, G.; Monmasson, E.; Spagnuolo, G. “FPGA-Based Implementation of An Adaptive P&O MPPT Controller for PV Applications”; IEEE 23rd Sympos. Ind. Electron. 2014, 1876-1881.##
    12. Subudhi, B.; Pradhan, R. “A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems”; IEEE Trans. Energy 2012, 4, 89-98.##
    13. Tey, K. S.; Mekhilef, S. “Modified Incremental Conductance Algorithm for Photovoltaic System under Partial Shading Conditions and Load Variation”; IEEE Trans. Ind. Electron. 2014, 61, 5384-5392.##
    14. Reinhardt, A.; Egarter, D.; Konstantinou, G.; Christin, D. “Worried About Privacy? Let Your PV Converter Cover Your Electricity Consumption Fingerprints”; IEEE Inter. Conf. on Smart Grid Comm. 2015, 25–30.##
    15. Sera, D.; Mathe, L.; Kerekes, T.; Spataru, S. V.; Teodorescu, R. “On the Perturb-and-Observe and Incremental Conductance MPPT Methods for PV Systems”; IEEE J. Photovolt. 2013, 3, 1070–1078.##
    16. De Brito, M. A. G.; Galotto, L.; Sampaio, L. P.; Melo, G. D. A.; Canesin, C. A. “Evaluation of the Main MPPT Techniques for Photovoltaic Applications”; IEEE Trans. Ind. Electron. 2013, 60, 1156–1167.##
    17. Errouissi, R.; Al-Durra, A.; Muyeen, S. M. “A Robust Continuous-Time MPC of A DC–DC Boost Converter Interfaced with a Grid-Connected Photovoltaic System”; IEEE J. Photovolt. 2016, 6, 1619-1629.##
    18. Mosa, M.; Shadmand, M. B.; Balog, R. S.; Rub, H. A. “Efficient Maximum Power Point Tracking Using Model Predictive Control for Photovoltaic Systems under Dynamic Weather Conditions”; IET Renew. Power Gener. 2017, 11, 1401-1409.##
    19. Wu, T. F.; Chang, C. H.; Chen, Y. H. “A Fuzzy-Logic-Controlled Single-Stage Converter for PV-Powered Lighting System Applications”; IEEE Trans. Ind. Electron. 2000, 47, 287-296.##
    20. Wu, J.; Zhao, K.; Jiang, Y.; Cheng, L.; Liu, Q.; Xue, Y.; Peng, K. “Maximum Power Point Tracking Algorithm for Laser Power Beaming Based on Neural Networks”; IEEE Int. Conf. Cloud Computing and Internet of Things 2018, 292-295.##
    21. Yang, Y.; Blaabjerg, F.; Zou, Z. “Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems”; IEEE Trans. Ind. 2013, 49, 2167–2176.##
    22. Energinet, D. “Technical Regulation 3.2.2 for PV Power Plants with A Power Output above 11 kW”; Danish Grid Codes, 2015.##
    23. Tafti, H. D.; Maswood, A. I.; Konstantinou, G.; Pou, J.; Kandasamy, K.; Lim, Z.; Ooi, G. H. “Low-Voltage Ride-Thorough Capability of Photovoltaic Grid-Connected Neutral-Point-Clamped Inverters with Active/Reactive Power Injection”; IET Renew. Power Gener. 2017, 11, 1182–1190.##
    24. Tafti, H. D.; Maswood, A. I.; Konstantinou, G.; Pou, J.; Blaabjerg, F. “A General Constant Power Generation Algorithm for Photovoltaic Systems”; IEEE Trans. Power Electron. 2018, 33, 4088–4101.##
    25. Sangwongwanich, A.; Yang, Y.; Blaabjerg, F. “A Sensorless Power Reserve Control Strategy for Two-Stage Grid-Connected PV Systems”; IEEE Power Electron. 2017, 32, 8559–8569.##
    26. Chamana, M.; Chowdhury, B. H.; Jahanbakhsh, F. “Distributed Control of Voltage Regulating Devices in the Presence of High PV Penetration to Mitigate Ramp-Rate Issues”; IEEE Trans. Smart Grid. 2018, 9, 1086–1095.##
    27. Kakimoto, N.; Takayama, S.; Satoh, H.; Nakamura, K. “Power Modulation of Photovoltaic Generator for Frequency Control of Power System”; IEEE Trans. Energy Conversion 2009, 24, 943–949.##
    28. Beniwal, N.; Hussain, I.; Singh, B. “Control and Operation of A Solar PV-Battery-Grid-Tied System in Fixed and Variable Power Mode”; IET Transm. & Distr. 2018, 12, 2633–2641.##
    29. Hernandez, J. C.; Bueno, P. G.; Sanchez-Sutil, F. “Enhanced Utilityscale Photovoltaic Units with Frequency Support Functions and Dynamic Grid Support for Transmission Systems”; IET Renew. Power Gener. 2017, 11, 361–372.##
    30. Tafti, H. D.; Townsend, C. D.; Konstantinou, G.; Pou, J. “A Multi-Mode Flexible Power Point Tracking Algorithm for Photovoltaic Power Plants”; IEEE Trans. Power Electron. 2019, 34, 5038– 5042##
    31. Yang, Y.; Blaabjerg, F.; Wang, H. “Constant Power Generation of Photovoltaic Systems Considering the Distributed Grid Capacity”; Proc. APEC 2014, 379–385.##
    32. Tafti, H. D.; Maswood, A. I.; Konstantinou, G.; Pou, J.; Acuna, P. “Active/Reactive Power Control of Photovoltaic Grid-Tied Inverters with Peak Current Limitation and Zero Active Power Oscillation During Unbalanced Voltage Sags”; IET Power Electron. 2018, 11, 1066-1073.##‏
    33. Park, S. M.; Park, S. Y. “Power Weakening Control of the Photovoltaic Battery System for Seamless Energy Transfer in Microgrids”; Proc. APEC 2013, 2971–2976.##
    34. Gomez-Merchan, R.; Vazquez, S.; Alcaide, A. M.; Tafti, H. D.; Leon, J. I.; Pou, J.; Rojas, C. A.; Kouro, S.; Franquelo, L. G. “Binary Search-Based Flexible Power Point Tracking Algorithm for Photovoltaic Systems”; IEEE Trans. Ind. Electron. 2020, 68, 5909-5920.##‏
    35. Baimel, D.; Tapuchi, S.; Levron, Y.; Belikov, J. “Improved Fractional Open Circuit Voltage MPPT Methods for PV Systems”; Electronics 2019, 8, 321.##‏
    36. Kobayashi, K.; Takano, I.; Sawada, Y.; “A Study on A Two Stage Maximum Power Point Tracking Control of A Photovoltaic System under Partially Shaded Insolation Conditions”; IEEE Power and Energy Society General Meeting 2003, 2612-2617.##
    37. Sher, H. A.; Murtaza, A. F.; Noman, A.; Addoweesh, K. E.; Al-Haddad, K.; Chiaberge, M. “A New Sensorless Hybrid MPPT Algorithm Based on Fractional Short-Circuit Current Measurement and P&O MPPT”; IEEE Trans. Energy 2015, 6, 1426-1434.##