[1] Sharaf, O. Z.; Orhan, M. F. “An Overview of Fuel Cell Technology: Fundamentals and Applications”; Renew. Sust. Energ. Rev. 2014, 32, 810-853.##
[2] Kong, X.; Khambadkone, A. M. “Modeling of a PEM Fuel-Cell Stack for Dynamic and Steady-State Operation Using ANN-Based Submodels”; IEEE Trans. Ind. Electron. 2009, 56, 4903-4914.##
[3] Bassam, A. M.; Phillips, A. B.; Turnock, S. R.; Wilson, P. A. “Development of a Multi-Scheme Energy Management Strategy for a Hybrid Fuel Cell Driven Passenger Ship”; Int. J. Hydrog. Energy. 2017, 42, 623-635.##
[4] Banaei, M. R.; Alizadeh, R. “Simulation-Based Modeling and Power Management of All-Electric Ships Based on Renewable Energy Generation Using Model Predictive Control Strategy”; IEEE Intell. Transp. Syst. Mag. 2016, 8, 90-103.##
[5] Alizade, E.; Tahvildarzade, D. “Application of Fuel Cell Technology in Ships and Submarines”; Seventh Conf. Marine Industrial. 2005.##
[6] Khalkhali, S. H. “Design and Simulation of the Electric Part of the Rail Gun Using Supercapasitors”; M.Sc. Thesis, 2018.##
[7] Chowdhury, S.; Crossley, P. “Microgrids and Active Distribution Networks. Energy Engineering Series”; Institution of Engineering and Technology, 2009.##
[8] Lipman, T. E.; Weber, A. Z. “Fuel Cells and Hydrogen Production”; Springer-Verlag, New York, 2019.##
[9] Puranik, S. V.; Keyhani, A.; Khorrami, F. “State-Space Modeling of Proton Exchange Membrane Fuel Cell”; IEEE Trans. Energy Convers. 2010, 25, 804-813.##
[10] Xie, C.; Ogden, J. M.; Quan, S.; Chen, Q. “Optimal Power Management for Fuel Cell–Battery Full Hybrid Powertrain on a Test Station”; INT. J. ELEC. POWER. 2013, 53, 307-320.##
[11] Wu, Y.; Gao, H. “Optimization of Fuel Cell and Supercapacitor for Fuel-Cell Electric Vehicles”; IEEE Trans. Veh. Technol. 2006, 55, 1748-1755.##
[12] Chu, D.; Jiang, R. “Performance of Polymer Electrolyte Membrane Fuel Cell Stacks: Part I: Evaluation and Simulation of an Airbreathing PEMFC Stack”; J. Power Sources. 1999, 83, 128-133.##
[13] Friede, W.; Rael, S.; Davat, B. “Mathematical Model and Characterization of the Transient Behavior of a PEM Fuel Cell”; IEEE Trans. PowerElectron. 2004, 19, 1234-1241.##
[14] Jia, J.; Li, Q.; Wang, Y.; Cham, Y. T.; Han, M. “Modeling and Dynamic Characteristic Simulation of a Proton Exchange Membrane Fuel Cell”; IEEE Trans. Energy Convers. 2009, 24, 283-291.##
[15] Restrepo, C.; Konjedic, T.; Garces, A.; Calvente, J.; Giral, R. “Identification of a Proton-Exchange Membrane Fuel Cell’s Model Parameters by Means of an Evolution Strategy”; IEEE Trans Industr Inform. 2015, 11, 548-559.##
[16] Baschuk, J. J.; Li, X. “Modelling of Polymer Electrolyte Membrane Fuel Cells with Variable Degrees of Water Flooding”; J. Power Sources. 2000, 86, 181-196.##
[17] Busquet, S.; Hubert, C. E.; Labbe, J.; Mayer, D.; Metkemeijer, R. “A New Approach to Empirical Electrical Modelling of a Fuel Cell, an Electrolyser or a Regenerative Fuel Cell”; J. Power Sources. 2004, 34, 41-48.##
[18] Marquezini, D. D.; Ramos, D. B.; Machado, R. Q.; Farret, F. A. “Interaction between Proton Exchange Membrane Fuel Cells and Power Converters for AC Integration”; IET Renew. Power Gener. 2008, 2, 151-161.##
[19] Xuewei, P.; Rathore, A. K. “Novel Bidirectional Snubberless Naturally Commutated Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles”; IEEE Trans. Ind. Electron. 2014, 61, 2307-2315.##
[20] Hwu, K. I.; Peng, T. J. “A Novel Buck–Boost Converter Combining KY and Buck Converters”; IEEE Trans. Power Electron. 2012, 27, 2236-224.##
[21] Tao, H.; Duarte, J. L.; Hendrix, M. A. M. “Line-Interactive UPS Using a Fuel Cell as the Primary Source”; IEEE Trans. Ind. Electron. 2008, 55, 3012-3021.##
[22] Liao, H.; Liang, T.; Yang, L.; Chen, J. “Non-Inverting Buck–Boost Converter with Interleaved Technique for Fuel-Cell System”; IET Power Electron. 2012, 5, 1379-1388.##
[23] Lee, S.; Park, J.; Choi, S. “A Three-Phase Current-Fed Push–Pull DC–DC Converter With Active Clamp for Fuel Cell Applications”; IEEE Trans. Power Electron. 2011, 26, 2266-2277.##
[24] Leyva-Ramos, J.; Lopez-Cruz, J. M.; Ortiz-lopez, M. G.; Diaz-Saldierna, L. H. “Switching Regulator Using a High Step-up Voltage Converter for Fuel-Cell Modules”; IET Power Electron. 2013, 6, 1626–1633.##
[25] Choe, J. L. S.; Baek, J. A. S. “Modelling and Simulation of a Polymer Electrolyte Membrane Fuel Cell System with a PWM DC/DC Converter for Stationary Applications”; IET Power Electron. 2008, 1, 305–317.##
[26] Choi, S.; Agelidis, V. G.; Yang, J. “Analysis, Design and Experimental Results of a Floating-Output Interleaved-Input Boost-Derived DC–DC High-Gain Transformer-Less Converter”; IET Power Electron. 2011, 4, 168-180.##
[27] Tseng, K.; Lin, J.; Huang, C. “High Step-up Converter with Three Winding Coupled Inductor for Fuel Cell Energy”; IEEE Trans. Power Electron. 2015, 30, 574-581.##
[28] Dwari, S.; Parsa, L. “An Efficient High Step-up Interleaved DC–DC Converter with a Common Active Clamp”; IEEE Trans. Power Electron. 2011, 26, 66-78.##
[29] Thounthong, P.; Sethakul, P.; Rael, S. “Fuel Cell Current Ripple Mitigation by Interleaved Technique for High Power Applications”; IEEE Industry Applications Society Annual Meeting, Houston, TX, USA, 2009, 1–8.##
[30] Liu, H.; Li, F.; Ai, J. “A Novel High Step-up Dual Switches Converter with Coupled Inductor and Voltage Multiplier Cell for a Renewable Energy System”; IEEE Trans. Power Electron. 2015, 31, 4974–4983.##
[31] Zhang, L.; Shen, G.; Chen, M.; Ioinovici, A.; Xu, D. “Two-Phase Interleaved Boost Converter with Voltage Multiplier under APS Control Method for Fuel Cell Power System”; Proceedings of the 7th Int. Conf. Power Electronics and Motion Control 2012.##
[32] Fekri, M.; Molavi, N.; Adib, E. “High Voltage Gain Interleaved DC–DC Converter with Minimum Current Ripple”; IET Power Electron. 2017, 10, 1924-1931.##
[33] Zhu, B.; Ren, L.; Wu, X. “Kind of High Step-up DC/DC Converter Using a Novel Voltage Multiplier Cell”; IET Power Electron. 2017, 10, 129–133.##
[34] Pirooz, A.; Noroozian, R. “Model Predictive Control of Classic Bidirectional DC-DC Converter for Battery Applications”; 7th Int. Conf. Power Electronics and Drive Systems Technologies (PEDSTC) 2016.##
[35] Liang, Y.; Liang, Z.; Zhao, D.; Huangfu, Y.; Guo, L. “Model Predictive Control for Interleaved DC-DC Boost Converter Based on Kalman Compensation”; IEEE Int. Conf. Power Electronics and Application and Exposition (PEAC), 2018.##
[36] Middlebrook, R. D.; Cuk, S. “A General Unified Approach to Modelling Switching-Converter Power Stages”; IEEE Power Electronics Specialists Conf. 1976, 73–86.##
[37] He, Y.; Luo, F. L. “Sliding-Mode Control for DC–DC Converters with Constant Switching Frequency”; IEEE Proc.–Control Theory and Appl 2006, 37-45.##
[38] Ang, K. H.; Chong, G.; Li, Y. “PID Control System Analysis, Design, and Technology”; IEEE Trans. Control Syst. Technol. 2014, 13, 559-576.##
[39] Shan, Y.; Hu, J.; Chan, K. W.; Fu, Q.; Guerrero, J. M. “Model Predictive Control of Bidirectional DC–DC Converters and AC/DC Interlinking Converters—A New Control Method for PV-Wind-Battery Microgrids”; IEEE Trans Sustain Energy. 2019, 10, 1823-1833.##
[40] Li, X.; Zhang, H.; Shadmand, M. B.; Balog, R. S. “Model Predictive Control of a Voltage-Source Inverter with Seamless Transition between Islanded and Grid Connected Operations”; IEEE Trans. Ind. Electron. 2017, 64, 7906-7918.##
[41] Spiegel, C. “PEM Fuel Cell Modeling and Simulation Using Matlab”; Academic Press, 2008.##
[42] Pukrushpan, J. T.; Peng, H.; Stefanopoulou, A. G. “Control of Fuel Cell Power System: Principles, Modelling, Analysis and Feedback Design”; Springer; 2004.##
[43] Padulles, J.; Ault, G. W.; McDonald, J. R. “An Integrated SOFC Plant Dynamic Model for Power Systems Simulation”; J. Power Sources. 2000, 86, 495–500.##
[44] Correa, J. M.; Farret, F. A.; Canha, L. N.; Simoes, M. G. “An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach”; IEEE Trans. Ind. Electron. 2004, 51, 1103-1112.##
[45] Torreglosa, J. P.; García, P.; Fernández, L. M.; Jurado, F. “Predictive Control for the Energy Management of a Fuel-Cell–Battery–Supercapacitor Tramway”; IEEE Trans Industr Inform. 2014, 10, 276-285.##
[46] Fathy, A.; Rezk, H.; Nassef, A. M. “Robust Hydrogen-Consumption-Minimization Strategy Based Salp Swarm Algorithm for Energy Management of Fuel Cell/Super Capacitor/Batteries in Highly Fluctuated Load Condition”; Renew. Energ. 2019, 139, 147-168.##
[47] Wang, Y.; Sun, Z.; Chen, Z. “Development of Energy Management System Based on a Rule-Based Power Distribution Strategy for Hybrid Power Sources”; Energy. 2019, 175, 1055-1066.##
[48] Wang, C.; Nehrir, M. H.; Shaw, S. R. “Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits”; IEEE Trans. Energy Convers. 2005, 20, 442-451.##
[49] Djerioui, A.; Houari, A.; Zeghlache, S.; Saim, A.; Benkhoris, M. F.; Mesbahi, T.; Machmoum, M. “Energy Management Strategy of Super Capacitor/Fuel Cell Energy Storage Devices for Vehicle Applications”; Int. J. Hydrog. Energy. 2019, 44, 23416-23428.##
[50] Liu, H.; Hu, H.; Wu, H. “Overview of High Step-up Coupled-Inductor Boost Converters”; IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 689–704.##
[51] Karamanakos, P.; Papafotiou, G.; Manias, S. N. “Model Predictive Control of the Interleaved DC-DC Boost Converter”; 15th Int. Conf. on System Theory, Control and Computing, Sinaia, 2011, 1-6.##
[52] Beygi, M.; Dehestani Kolagar, A.; Alizadeh Pahlavani, M. R. “Utilizing MPC Controlled Multilevel Neutral Point Clamped Rectifier for Supplying Loran Transmitter”; Adv. Defence Sci. Technol. 2020, 2, 155-165 (In Persian).##
[53] Spiazzi, G.; Buso, S.; Sichirollo, F. “Small-Signal Modeling of the Interleaved Boost with Voltage Multiplier”; IEEE Energy Conversion Congress and Exposition (ECCE) 2012, 456–461.##