مدل‌سازی دینامیکی پیل سوختی وکنترل پیش‌بین مبدل واسط از نوع IBVM در مود جریانی، جهت استفاده در سامانه‌های تولید توان پراکنده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 استادیار، دانشگاه صنعتی مالک اشتر، تهران، ایران

3 دانشیار، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

پیل سوختی به‌عنوان یک منبع تولید انرژی کارآمد و سازگار با محیط زیست، اخیرا به‌طور گسترده‌ای مورد توجه قرار گرفته است. در این مقاله، یک مدل جامع از پیل سوختی غشاء تبادل پروتون kW 6 که شامل مدل دینامیکی همراه با مدل الکتریکی می‌باشد، ارائه می‌شود. تعادل جرمی و تعادل انرژی ترمودینامیکی، تغییرات دمایی، ولتاژ خروجی مدار باز، تلفات ولتاژ و لایه دوتایی بار الکتریکی در پیل سوختی مدل­سازی می‌شوند. برای اتصال پیل سوختی به ریزشبکه‌ها در کاربردهایی نظیر سامانه‌های تولید توان پراکنده، سیستم قدرت سامانه‌های پدافندی دریایی و شناورهای نظامی به مبدل‌هایی با بهره ولتاژ بالا، توانایی بالا در پردازش توان و سطح بالایی از جریان جذب‌شده از منبع DC نیاز می‌باشد. بنابراین در این مقاله، دو مبدل DC-DC افزاینده­ درهم‌تنیده و مبدل افزاینده درهم‌تنیده همراه با چند برابر کننده ولتاژ (IBVM) جهت اتصال پیل سوختی به ریزشبکه‌ها پیشنهاد می‌شود. سپس روش کنترل پیش‌بین به‌عنوان یک کنترل‌کننده حالت جریانی، برای هر دو مبدل پیشنهادی به‌منظور کنترل جریان تزریقی توسط پیل سوختی و همچنین صاف کردن نوسانات خروجی پیل سوختی طراحی می‌شود. در مقایسه با روش­های کنترل خطی آبشاری مرسوم، روش پیشنهادی از تنظیم کردن پارامترهای PID، مدولاسیون PWM و تبدیل مختصات جلوگیری می‌کند. درنهایت، نتایج شبیه‌سازی جهت اعتبارسنجی مدل ارائه‌شده، کارایی مبدل‌های انتخابی و روش کنترل پیشنهادی ارائه می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Dynamic Modeling of Fuel Cell and Model Predictive Control of Interface IBVM Converter in Current Mode for the Application of Distributed Power Generation

نویسندگان [English]

  • A. Abdollahi Arjanaki 1
  • A. Dehestani Kolagar 2
  • M. R. Alizadeh Pahlavani 3
1 Malek-Ashtar University of Technology
2 Malek-Ashtar University of Technology
3 Malek-Ashtar University of Technology
چکیده [English]

The fuel cell, as an efficient and environmentally friendly energy source, has received much attention in recent years. In this paper, a comprehensive model of the 6-kW proton exchange membrane (PEM) fuel cell, including dynamic model along with the electrical model, is presented. The mass balance and thermodynamic energy balance, temperature dynamics, open-circuit output voltage, voltage losses, and the formation of charge double layer in the PEM fuel cell are modeled. The connection of fuel cells to the microgrids in applications such as distributed power generation, power systems of naval defense systems, and military ships requires DC-DC power converters with high voltage gain, high capability of power processing, and high levels of current absorbed from the dc source. In this context, this paper proposes the use of an interleaved boost DC-DC converter and an interleaved boost with voltage multiplier converter (IBVM) to connect the fuel cell to the microgrids. Then a model predictive control algorithm is proposed for the two proposed converter as a current-mode controller to control the injected current by fuel cell as well as to smooth output fluctuations of the fuel cell. Compared with traditional cascade linear control, the proposed scheme avoids PID parameters tuning, PWM modulation, and coordinate transformation. The simulation results are given to confirm the effectiveness of the proposed control method, the chosen converters, and the obtained model of PEM fuel cell.

کلیدواژه‌ها [English]

  • Fuel Cell
  • Dynamic Modeling
  • DC-DC Converter
  • Current Mode Control
  • Model Predictive Control
   [1]      Sharaf, O. Z.; Orhan, M. F. “An Overview of Fuel Cell Technology: Fundamentals and Applications”; Renew. Sust. Energ. Rev. 2014, 32, 810-853.##
   [2]      Kong, X.; Khambadkone, A. M. “Modeling of a PEM Fuel-Cell Stack for Dynamic and Steady-State Operation Using ANN-Based Submodels”; IEEE Trans. Ind. Electron. 2009, 56, 4903-4914.##
   [3]      Bassam, A. M.; Phillips, A. B.; Turnock, S. R.; Wilson, P. A. “Development of a Multi-Scheme Energy Management Strategy for a Hybrid Fuel Cell Driven Passenger Ship”; Int. J. Hydrog. Energy. 2017, 42, 623-635.##
   [4]      Banaei, M. R.; Alizadeh, R. “Simulation-Based Modeling and Power Management of All-Electric Ships Based on Renewable Energy Generation Using Model Predictive Control Strategy”; IEEE Intell. Transp. Syst. Mag. 2016, 8, 90-103.##
   [5]      Alizade, E.; Tahvildarzade, D. “Application of Fuel Cell Technology in Ships and Submarines”; Seventh Conf. Marine Industrial. 2005.##
   [6]      Khalkhali, S. H. “Design and Simulation of the Electric Part of the Rail Gun Using Supercapasitors”; M.Sc. Thesis, 2018.##
   [7]      Chowdhury, S.; Crossley, P. “Microgrids and Active Distribution Networks. Energy Engineering Series”; Institution of Engineering and Technology, 2009.##
   [8]      Lipman, T. E.; Weber, A. Z. “Fuel Cells and Hydrogen Production”; Springer-Verlag, New York, 2019.##
   [9]      Puranik, S. V.; Keyhani, A.; Khorrami, F. “State-Space Modeling of Proton Exchange Membrane Fuel Cell”; IEEE Trans. Energy Convers. 2010, 25, 804-813.##
[10]      Xie, C.; Ogden, J. M.; Quan, S.; Chen, Q. “Optimal Power Management for Fuel Cell–Battery Full Hybrid Powertrain on a Test Station”; INT. J. ELEC. POWER. 2013, 53, 307-320.##
[11]      Wu, Y.; Gao, H. “Optimization of Fuel Cell and Supercapacitor for Fuel-Cell Electric Vehicles”; IEEE Trans. Veh. Technol. 2006, 55, 1748-1755.##
[12]      Chu, D.; Jiang, R. “Performance of Polymer Electrolyte Membrane Fuel Cell Stacks: Part I: Evaluation and Simulation of an Airbreathing PEMFC Stack”; J. Power Sources. 1999, 83, 128-133.##
[13]      Friede, W.; Rael, S.; Davat, B. “Mathematical Model and Characterization of the Transient Behavior of a PEM Fuel Cell”; IEEE Trans. PowerElectron. 2004, 19, 1234-1241.##
[14]      Jia, J.; Li, Q.; Wang, Y.; Cham, Y. T.; Han, M. “Modeling and Dynamic Characteristic Simulation of a Proton Exchange Membrane Fuel Cell”; IEEE Trans. Energy Convers. 2009, 24, 283-291.##
[15]      Restrepo, C.; Konjedic, T.; Garces, A.; Calvente, J.; Giral, R. “Identification of a Proton-Exchange Membrane Fuel Cell’s Model Parameters by Means of an Evolution Strategy”; IEEE Trans Industr Inform. 2015, 11, 548-559.##
[16]      Baschuk, J. J.; Li, X. “Modelling of Polymer Electrolyte Membrane Fuel Cells with Variable Degrees of Water Flooding”; J. Power Sources. 2000, 86, 181-196.##
[17]      Busquet, S.; Hubert, C. E.; Labbe, J.; Mayer, D.; Metkemeijer, R.  “A New Approach to Empirical Electrical Modelling of a Fuel Cell, an Electrolyser or a Regenerative Fuel Cell”; J. Power Sources. 2004, 34, 41-48.##
[18]      Marquezini, D. D.; Ramos, D. B.; Machado, R. Q.; Farret, F. A. “Interaction between Proton Exchange Membrane Fuel Cells and Power Converters for AC Integration”; IET Renew. Power Gener. 2008, 2, 151-161.##
[19]      Xuewei, P.; Rathore, A. K. “Novel Bidirectional Snubberless Naturally Commutated Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles”; IEEE Trans. Ind. Electron. 2014, 61, 2307-2315.##
[20]      Hwu, K. I.; Peng, T. J. “A Novel Buck–Boost Converter Combining KY and Buck Converters”; IEEE Trans. Power Electron. 2012, 27, 2236-224.##
[21]      Tao, H.; Duarte, J. L.; Hendrix, M. A. M. “Line-Interactive UPS Using a Fuel Cell as the Primary Source”; IEEE Trans. Ind. Electron. 2008, 55, 3012-3021.##
[22]      Liao, H.; Liang, T.; Yang, L.; Chen, J. “Non-Inverting Buck–Boost Converter with Interleaved Technique for Fuel-Cell System”; IET Power Electron. 2012, 5, 1379-1388.##
[23]      Lee, S.; Park, J.; Choi, S. “A Three-Phase Current-Fed Push–Pull DC–DC Converter With Active Clamp for Fuel Cell Applications”; IEEE Trans. Power Electron. 2011, 26, 2266-2277.##
[24]      Leyva-Ramos, J.; Lopez-Cruz, J. M.; Ortiz-lopez, M. G.; Diaz-Saldierna, L. H. “Switching Regulator Using a High Step-up Voltage Converter for Fuel-Cell Modules”; IET Power Electron. 2013, 6, 1626–1633.##
[25]      Choe, J. L. S.; Baek, J. A. S. “Modelling and Simulation of a Polymer Electrolyte Membrane Fuel Cell System with a PWM DC/DC Converter for Stationary Applications”; IET Power Electron. 2008, 1, 305–317.##
[26]      Choi, S.; Agelidis, V. G.; Yang, J. “Analysis, Design and Experimental Results of a Floating-Output Interleaved-Input Boost-Derived DC–DC High-Gain Transformer-Less Converter”; IET Power Electron. 2011, 4, 168-180.##
[27]      Tseng, K.; Lin, J.; Huang, C. “High Step-up Converter with Three Winding Coupled Inductor for Fuel Cell Energy”; IEEE Trans. Power Electron. 2015, 30, 574-581.##
[28]      Dwari, S.; Parsa, L. “An Efficient High Step-up Interleaved DC–DC Converter with a Common Active Clamp”; IEEE Trans. Power Electron. 2011, 26, 66-78.##
[29]      Thounthong, P.; Sethakul, P.; Rael, S. “Fuel Cell Current Ripple Mitigation by Interleaved Technique for High Power Applications”; IEEE Industry Applications Society Annual Meeting, Houston, TX, USA, 2009, 1–8.##
[30]      Liu, H.; Li, F.; Ai, J. “A Novel High Step-up Dual Switches Converter with Coupled Inductor and Voltage Multiplier Cell for a Renewable Energy System”; IEEE Trans. Power Electron. 2015, 31, 4974–4983.##
[31]      Zhang, L.; Shen, G.; Chen, M.; Ioinovici, A.; Xu, D. “Two-Phase Interleaved Boost Converter with Voltage Multiplier under APS Control Method for Fuel Cell Power System”; Proceedings of the 7th Int. Conf. Power Electronics and Motion Control 2012.##
[32]      Fekri, M.; Molavi, N.; Adib, E. “High Voltage Gain Interleaved DC–DC Converter with Minimum Current Ripple”; IET Power Electron. 2017, 10, 1924-1931.##
[33]      Zhu, B.; Ren, L.; Wu, X. “Kind of High Step-up DC/DC Converter Using a Novel Voltage Multiplier Cell”; IET Power Electron. 2017, 10, 129–133.##
[34]      Pirooz, A.; Noroozian, R. “Model Predictive Control of Classic Bidirectional DC-DC Converter for Battery Applications”; 7th Int. Conf. Power Electronics and Drive Systems Technologies (PEDSTC) 2016.##
[35]      Liang, Y.; Liang, Z.; Zhao, D.; Huangfu, Y.; Guo, L. “Model Predictive Control for Interleaved DC-DC Boost Converter Based on Kalman Compensation”; IEEE Int. Conf. Power Electronics and Application and Exposition (PEAC), 2018.##
[36]      Middlebrook, R. D.; Cuk, S. “A General Unified Approach to Modelling Switching-Converter Power Stages”; IEEE Power Electronics Specialists Conf. 1976, 73–86.##
[37]      He, Y.; Luo, F. L. “Sliding-Mode Control for DC–DC Converters with Constant Switching Frequency”; IEEE Proc.–Control Theory and Appl 2006, 37-45.##
[38]      Ang, K. H.; Chong, G.; Li, Y. “PID Control System Analysis, Design, and Technology”; IEEE Trans. Control Syst. Technol. 2014, 13, 559-576.##
[39]      Shan, Y.; Hu, J.; Chan, K. W.; Fu, Q.; Guerrero, J. M. “Model Predictive Control of Bidirectional DC–DC Converters and AC/DC Interlinking Converters—A New Control Method for PV-Wind-Battery Microgrids”; IEEE Trans Sustain Energy. 2019, 10, 1823-1833.##
[40]      Li, X.; Zhang, H.; Shadmand, M. B.; Balog, R. S. “Model Predictive Control of a Voltage-Source Inverter with Seamless Transition between Islanded and Grid Connected Operations”; IEEE Trans. Ind. Electron. 2017, 64, 7906-7918.##
[41]      Spiegel, C. “PEM Fuel Cell Modeling and Simulation Using Matlab”; Academic Press, 2008.##
[42]      Pukrushpan, J. T.; Peng, H.; Stefanopoulou, A. G. “Control of Fuel Cell Power System: Principles, Modelling, Analysis and Feedback Design”; Springer; 2004.##
[43]      Padulles, J.; Ault, G. W.; McDonald, J. R. “An Integrated SOFC Plant Dynamic Model for Power Systems Simulation”; J. Power Sources. 2000, 86, 495–500.##
[44]      Correa, J. M.; Farret, F. A.; Canha, L. N.; Simoes, M. G. “An Electrochemical-Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach”; IEEE Trans. Ind. Electron. 2004, 51, 1103-1112.##
[45]      Torreglosa, J. P.; García, P.; Fernández, L. M.; Jurado, F. “Predictive Control for the Energy Management of a Fuel-Cell–Battery–Supercapacitor Tramway”; IEEE Trans Industr Inform. 2014, 10, 276-285.##
[46]      Fathy, A.; Rezk, H.; Nassef, A. M. “Robust Hydrogen-Consumption-Minimization Strategy Based Salp Swarm Algorithm for Energy Management of Fuel Cell/Super Capacitor/Batteries in Highly Fluctuated Load Condition”; Renew. Energ. 2019, 139, 147-168.##
[47]      Wang, Y.; Sun, Z.; Chen, Z. “Development of Energy Management System Based on a Rule-Based Power Distribution Strategy for Hybrid Power Sources”; Energy. 2019, 175, 1055-1066.##
[48]      Wang, C.; Nehrir, M. H.; Shaw, S. R. “Dynamic Models and Model Validation for PEM Fuel Cells Using Electrical Circuits”; IEEE Trans. Energy Convers. 2005, 20, 442-451.##
[49]      Djerioui, A.; Houari, A.; Zeghlache, S.; Saim, A.; Benkhoris, M. F.; Mesbahi, T.; Machmoum, M. “Energy Management Strategy of Super Capacitor/Fuel Cell Energy Storage Devices for Vehicle Applications”; Int. J. Hydrog. Energy. 2019, 44, 23416-23428.##
[50]      Liu, H.; Hu, H.; Wu, H. “Overview of High Step-up Coupled-Inductor Boost Converters”; IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 689–704.##
[51]      Karamanakos, P.; Papafotiou, G.; Manias, S. N. “Model Predictive Control of the Interleaved DC-DC Boost Converter”; 15th Int. Conf. on System Theory, Control and Computing, Sinaia, 2011, 1-6.##
[52]      Beygi, M.; Dehestani Kolagar, A.; Alizadeh Pahlavani, M. R. “Utilizing MPC Controlled Multilevel Neutral Point Clamped Rectifier for Supplying Loran Transmitter”; Adv. Defence Sci. Technol. 2020, 2, 155-165 (In Persian).##
[53]      Spiazzi, G.; Buso, S.; Sichirollo, F. “Small-Signal Modeling of the Interleaved Boost with Voltage Multiplier”; IEEE Energy Conversion Congress and Exposition (ECCE) 2012, 456–461.##