طراحی یک حسگر زیستی جدید ضریب شکستی مبتنی بر بلورفوتونی مناسب جهت تشخیص دی‌ان‌ای

نوع مقاله : فوتونیک

نویسندگان

1 گروه فوتونیک، دانشگاه جامع امام حسین (ع)،

2 گروه فوتونیک دانشکده علوم دانشگاه جامع امام حسین(ع)- تهران - ایران

3 دانشگاه جامع امام حسین (ع)

چکیده

در این مقاله یک حسگر زیستی بلور فوتونی جدید جهت اندازه‌گیری ضریب شکست، پیشنهاد و مورد بررسی قرارگرفته است. سه ساختارِ تک، جفت و سه کاواکی طراحی ومطالعه شدند. در این ساختارها یک کاواک مرکزی به‌عنوان کاواک سنجش بین موج‌برهای ورودی و خروجی ساندویچ شده است. به‌منظور شبیه‌سازی و بررسی نحوه انتشار نور در ساختارها از روش تفاضل محدود در حوزه زمان و بسط موج تخت استفاده ‌شده است. جذب مولکول­های DNA موجود در محلول حسگری (PBS) منجر به تغییر در ضریب شکست مؤثر کاواک‌های سنجش شده و درنتیجه میزان عبوردهی طیفی از موج‌بر تغییر خواهد کرد. با بررسی میزان این تغییرات، فرآیند سنجش و تشخیص میسر می‌شود. با مطالعه اثر پارامترهای مختلف بر طیف خروجی ساختار، به‌منظور دستیابی به بهترین پارامترهای حسگری، مشاهده شد که پارامترهای هندسی ناحیه نقص و همچنین شعاع کاواک‌های کناری کاواک مرکزی، تأثیر قابل ‌ملاحظه‌ای بر طیف ساختارها دارند. نتایج نشان دادند که ساختار تک­کاواکی بیشینه حساسیت برابر باnm/RIU 345 و ساختار سه کاواکی بیشینه فاکتور کیفیت برابر با 531 را دارند. در مقایسه با ساختارهای قبلی انجام‌شده، ساختارهای پیشنهادی در این مقاله به نسبت کارایی به مراتب بهتری از خود نشان می­دهند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Design of a New Refractive Index Bio-Sensor Based on Photonic Crystal Suitable for DNA Sensing

نویسندگان [English]

  • yadollah shahamat 1
  • Javad Khalilzadeh 2
  • Ali Reyahi 3
1 Imam Hossein Comperehensive University, Tehran, Iran
2 Photonics Dpartment, Sciences Faculty, Imam Hossein University, Tehran, Iran
3 Laser and Optic research center of Imam Hossain University
چکیده [English]

In this paper, a novel biosensor based on the photonic crystal for refractive index measurements is proposed and investigated. Three designs, known as single-cavity structure, duble and triple-cavities structures, are designed and studies. All the structures were composed of a main hole as a ring resonator localized between the input and output waveguides. Two-dimensional finite-difference time domain and plane-wave expansion methods are employed to study the output power spectrum of the structures. By absorbing DNA molecules in the PBS solution, the refractive index of the sensing holes differ which results to the output transmission spectrum of the structure shift and hence, the sensing process occure. We study the impact of different parameters on the sensing of the structures. Results show that the sensitivity of the sensor depends mainly on the geometrical properties of the defect region of the photonic crystal structure. Results shows that the single cavity and triplet structures have the best sensitivity equal to 345nm/RIU and 531compared to the other proposed sensors, respectivelly.

کلیدواژه‌ها [English]

  • Photonic Crystal
  • Biosensor
  • DNA
[1]     Bohunicky, B.; Mousa, S. A. “Biosensors: The New Wave in Cancer Diagnosis”; NanoTech. Sci. Appl. 2011, 4, 1.##
[2]     Minaei, M. E.; Saadati, M.; Najafi, M.; Honari, M. “Immobilization and Hybridization of DNA/DNA of the rfbE Gene Escherichia Coli O157:H7 on Gold Electrode Surface for the Detection of Specific Sequences by Electrochemical Impedance Spectroscopy Method”; J. Adv. Defence Sci. & Tech. 2014, 4, 279-283.##
[3]     Bahabady, A. M.; Olyaee, S. “Two-Curve-Shaped Biosensor for Detecting Glucose Concentration and Salinity of Seawater Based on Photonic Crystal Nano-Ring Resonator”; Sens. Lett. 2015, 13, 774-777.##
[4]     Jafari, A.; Rahmatnezamabad, A. “Controlling Band Gap of One Dimensional Photonic Crystals via the Nonlinear Characteristic of Layers”; J. Adv. Defence Sci. & Tech. 2019, 2, 169-175.##
[5]     Yang, X.; Zhang. A.Y; Wheeler, D.A.; Bond, T.C.; Gu C, Li Y. “Direct molecule-specific glucose detection by Raman spectroscopy based on photonic crystal fiber”; Anal. Bioanal. chem. 2012, 402(2), 687-691.##
[6]     Salahandish, R.; Zargartalebi, H.; Janmaleki, M.; Khetani, S.; Azarmanesh, M.; Ashani, M.M.; Aburashed, R.; Vatani, M.; Ghaffarinejad, A.; Sanati‐Nezhad, A. “Reproducible and Scalable Generation of Multilayer Nanocomposite Constructs for Ultrasensitive Nanobiosensing”; Adv. Materials Tech. 2019 Sep 12:1900478.##
[7]     Salahandish, R.; Ghaffarinejad, A.; Omidinia, E.; Zargartalebi, H.; Majidzadeh, A. K.; Naghib, S.M.; Sanati-Nezhad, A. “Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped grapheme”; Biosens. Bioelectron. 2018 Nov 30, 120, 129-136.##
[8]     Shushama, K. N.; Rana, M. M.; Inum, R.; Hossain, M. B. “Graphene Coated Fiber Optic Surface Plasmon Resonance Biosensor for the DNA Hybridization Detection: Simulation Analysis”; Opt. Commun. 2017, 383, 186-190.##
[9]     Caucheteur, C.; Guo, T.; Albert, J. “Review of Plasmonic Fiber Optic Biochemical Sensors: Improving the Limit of Detection”; Anal. Bioanal. Chem. 2015, 407, 3883-3897.##
[10]  Ksendzov, A.; Lin, Y. “Integrated Optics Ring-Resonator Sensors for Protein Detection”; Opt. lett. 2005, 30, 3344-3346.##
[11]  Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; De Abajo, F. J.; Pruneri, V.; Altug, H. “Mid-Infrared Plasmonic Biosensing with Graphene”; Science. 2015, 349, 165-168.##
[12]  Mokari, M.; Shahamat, Y.; Alamatsaz, M.H.; Babaei-Brojeny, A.A.; Moeini, H. “The effect of material nonlinearity on the band gap for TE and TM modes in square and triangular lattices”; Iranian J. Phys. Research. 2018; 18(3).##
[13]  Wu, L.; Chu, H. S.; Koh, W. S.; Li, E. P. “Highly Sensitive Graphene Biosensors Based on Surface Plasmon Resonance”; Opt. express. 2010, 18, 14395-14400.##
[14]  Jia, G. Y.; Huang, Z. X.; Zhang, Y. L.; Hao, Z. Q.; Tian, Y. L. “Ultrasensitive Plasmonic Biosensors Based on Halloysite Nanotubes/MoS2/Black Phosphorus Hybrid Architectures”; J. Mater. Chem. C. 2019, 7, 3843-3851.##
[15]  Yen, Y. C.; Chiu, N. F. “Plasmonic Biosensor Detected Human Chorionic Gonadotropin with Naked Eye in Optical Sensors”; Inter. Soc. Opt. Photonics. 2019, 11028, 1102823.##
[16]  Chow, E.; Grot, A.; Mirkarimi, L. W.; Sigalas, M.; Girolami, G. “Ultracompact Biochemical Sensor Built with Two-Dimensional Photonic Crystal Microcavity”; Opt. Lett. 2004, 29, 1093-1095.##
[17]  Shahamat, Y.; Vahedi, M. “Mid-Infrared Plasmonically Induced Absorption and Transparency in a Si-Based Structure for Temperature Sensing and Switching Applications”; Opt. Commun. 2019, 430, 227-233.##
[18]   Luo, Y.; Fan, R.; Zhang, Y.; Wu, Q.; Ren, Z.; Peng, B. “Novel Optical Fiber Refractive Sensor Fabricated with an Alcohol-Filled Photonic Crystal Fiber Based on a Mach–Zehnder Interferometer”; Opt. Fiber Tech. 2019, 48, 278-282.##
[19]  Kim, S.; Lee, J.; Jeon, H.; Kim, H.J. “Fiber-coupled surface-emitting photonic crystal band edge laser for biochemical sensor applications”; Appl. Phys. Lett. 2009, 94, 133503.##
[20]  Dündar, M. A.; Ryckebosch, E.C.; Nötzel, R.; Karouta, F.; Van ijzendoorn, L.J.; Van der Heijden, R.W. “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index”; Opt. express.2010, 18 (5),  4049–4056.##
[21]  Pal, S.; Guillermain, E.; Sriram, R.; Miller, B.L; Fauchet, P.M. “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing”; Biosens. Bioelectron. 2011, 26 (10), 4024–4031.##
[22]  Sriram, R.; Baker, J.E.; Fauchet, P.M.; Miller, B.L. “Two dimensional photonic crystal biosensors as a platform for label-free sensing of biomolecules, infrontiers in Biological Detection: From Nanosensors to Systems V”; Inter. Soc. Opt. Photonics. 2013, 8570, 857007.##
[23]  Olyaee, S., Bahabady, A.M.; Leitgeb, E. “A diamond-shaped bio-sensor based on two-dimensional photonic crystal nano-ring resonator”; In2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP). 2014 Jul 23, 434-437.##
[24]  Bendib, S.; Zegadi, A.; Djeffal, N. “Improved sensitivity of 2D annular photonic crystal biosensor working at THz frequency range”; Opt. Quant. Electron. 2016 Dec 1; 48(12):528.##
[25]  Arunkumar, R.; Suganya, T.; Robinson, S. “Design and analysis of photonic crystal elliptical ring resonator based pressure sensor”; Photonics Opt. Tech. 2017 Mar, 3, 30-34.##
[26]   Olyaee, S.; Mahmood, S.; Mohsenirad, H. “Label-free detection of glycated haemoglobin in human blood using silicon-based photonic crystal nanocavity biosensor”; Journal of Modern Optics. 2018, 63, 1274-1279.##
[27]  Danaie, M.; Kiani, B. “Design of a label-free photonic crystal refractive index sensor for biomedical applications”; Photonic. Nanostruct. 2018 Sep 1, 31, 89-98.##
[28]  Fatemeh Rahman, Z.; Kaatuzian, H.; Danaie, M. “Hybrid Photonic Crystal Cavity as a Sensitive Label-Free Biosensor”; 27th Iranian Conference on Electrical Engineering (ICEE), 2019, 18-22.##
[29]  Benmerkhi, A.; Bouchemat, M.; Bouchemat, T. “Computational Study of Photonic Crystal Resonator for Biosensor Application”; Frequenz. 2019 Sep 25, 73, 307-316.##
[30]  Shruti, S.; Sinha, R.K.; Bhattacharyyab, R. “Photonic crystal slab waveguide-based infiltrated liquid sensors: design and analysis”; J. Nanophotonics. 2011, 5, 053505.##
[31]  Zhanga, L.; Cao, T.; Li, Z.G.; Qin, K.R. and Yan, W.P. “Study of photonic crystal cavity sensor integrated with microfluidic channel in the visible region”; Proceedings; SPIE 8561; Advanced sensor systems and applications; Beijing; 2012; 85610A:1–7.##
[32]  Dutta, H.; Pal, S. “Design of a highly sensitive photonic crystal waveguide platformfor refractive index based biosensing”; Opt. Quant. Electron. 45, 2013, 907–917.##
[33]  Bagci, F.; Akaoglu, B. “Enhancement of Refractive Index
Sensitivity in Photonic Crystal Waveguide-Based Sensors by
Selective Infiltration”; Acta. Phys. Pol. A. 2013.##
[34]  Faida, B.; Touraya, B.; Mohamed, B.;
and Nicole, P. “Optofluidic sensor using
two-dimensional photonic crystal waveguides”; Phys. J. Appl. Phys. 201 62: 11201.##
[35]  Dutta, H.S.; Pal, S. “Design of a highly sensitive photonic crystal waveguide platform for refractive index based biosensing”; Opt. Quant. Electron. 2013, 45, 907–917.##
[36]  Taflove, A.; Oskooi, A.; Johnson, S. G.; editors. “Advances in FDTD Computational Electrodynamics”; Photonics and Nanotech. Artech house; 2013.##
[37]  Shahamat, Y.; Vahedi, M. “Designing a Photonic Crystal Based Optical Wavelength Division Demultiplexer for Communication Applications”; Majlesi J. Telecomm. Devices. 2019, 8(1), 1-5.##
[38]  Shahamat, Y.; Ghaffarinejad, A.; Vahedi, M. “Plasmon Induced Transparency and Refractive Index Sensing in Two Nanocavities and Double Nanodisk Resonators”; Optik. 2019 Oct 14:163618.##
[39]  Tamersit, K.; Djeffal, F. “Double-Gate Graphene Nanoribbon Field-Effect Transistor for DNA and Gas Sensing Applications: Simulation Study and Sensitivity Analysis”; IEEE Sensors J. 2016, 16, 4180-4191.##
[40]  Hossain, M.; Rana, M. “Graphene Coated High Sensitive Surface Plasmon Resonance Biosensor for Sensing DNA Hybridization”; Sens. Lett. 2016, 14, 145-152.##
[41]  Diéguez, L.; Darwish, N.; Mir, M.; Martínez, E.; Moreno, M.; Samitier, J. “Effect of the Refractive Index of Buffer Solutions in Evanescent Optical Biosensors”; Sens. Lett. 2009, 7, 851-855.##
 [42]  Shushama, K. N.; Rana, M. M.; Inum, R.; Hossain, M. B. “Graphene Coated Fiber Optic Surface Plasmon Resonance Biosensor for the DNA Hybridization Detection: Simulation Analysis”; Opt. Commu. 2017, 383, 186-190.##
[43]  Mertens, Johann.; Celia, R.; Montserrat, C.; Daniel, R.; Jose Angel Martín, G.; Carlos, B.; Javier, T. “Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films”; Nature nanotechnology, 2008, 3, 301.##
[44]  Kataoka, H.; Chiho.; Yuji, M. “Label-free detection of DNA by field-effect devices”; IEEE Sensors Journal, 2011, 11, 3153-3160.##
[45]  Kaye.; Savannah.; Zheng, Z.; Mollye, S.; Krishnan, Ch.; Paula M. Koelle, Robert, L, Upender, M, Yongbin, L, Jianjun, W. “Label-free detection of DNA hybridization with a compact LSPR-based fiber-optic sensor”; Analyst, 2017, 142, 1974-1981.##
[46]  Juan-Colás.; José.; Steven, J.; Thomas F. Krauss. “Dual-mode Electro-Optical techniques for biosensing applications: A Review”; Sensors, 2017, 17, 2047.##
[47]  Syahir.; Amir.; Kenji, U.; Kin-ya, Tomizaki.; Kotaro, K.; Hisakazu, M. “Label and label-free detection techniques for protein microarrays”; Microarrays, 2015, 228-244.##
[48]  Chen.; Xueping.; Yu, L.; Jiaoqi, H.; Wei, L.; Junfu, H.; Yang, Z.; Weiling, F. “Label-free techniques for laboratory medicine applications”; Frontiers in Laboratory Medicine, 2017, 82-85.##