طراحی‌ و شبیه سازی یک نانوحسگر زیستی جدید مبتنی بر تشدید پلاسمون سطحی برای تشخیص پیوند DNA

نوع مقاله : فوتونیک

نویسندگان

1 گروه فوتونیک دانشکده علوم دانشگاه جامع امام حسین(ع)

2 دانشیار دانشگاه جامع امام حسین (ع)

3 مرکز لیزر اپتیک دانشگاه جامع امام حسین (ع)

چکیده

در این مقاله یک حسگر پلاسمونیجدید برای کاربردهای پزشکی نظیر تشخیص پیوند بین تک رشته­های DNA پیشنهاد و به کمک روش ماتریس انتقال و تفاضل محدود در حوزه زمان (FDTD) شبیه­سازی و تحلیل شده است. این حسگر جذب مولکول­های DNA موجود در محلول حسگری (PBS) را از طریق تغییرات حاصل شده در نور انعکاسی ساختار تشخیص می­دهد. چراکه ضریب شکست محیط سنجش با جذب غلظت­های مختلف مولکول­ها تغییر می­کند. ساختار پیشنهادی متشکل از فلز (طلا/نقره)-اکسید قلع ایندیوم(ITO) –گرافن و محیط سنجش است. مشاهده شد کهلایه اکسید فلزی ITO نقش مهمی در پارامترهای حسگر خواهد داشت. با بهینه­سازی ضخامت­ فلزات (طلا و نقره)، اکسید فلزی و گرافن، حساسیت بیشینه deg/RIU 75برای ساختار طلا-گرافن-آنالایت و بیشینه حد تشخیص 33/58 برای ساختار نقره-ITO-آنالایت بدست آمد. در مقایسه با ساختارهای قبلی انجام شده، ساختارهای پیشنهادی در این مقاله به نسبت کارایی بهتری دارند. بنابراین، زیست حسگر بهینه پیشنهادیقادر است پنجره جدیدی برای تشخیص مولکول­های زیستی باز کند.

کلیدواژه‌ها


عنوان مقاله [English]

Design and Simulation of a Novel Surface Plasmon Based Bio-Nanosensor for Detection of DNA Hybridization

نویسندگان [English]

  • H. Rasouli noori 1
  • J. Khalilzadeh 2
  • M. Shahamat 3
  • A. Riahi 3
1 Photonic department of Sciences faculty of Imam Hossein University
2 ihu
3 Laser- Optics center of Imam Hossein University
چکیده [English]

This paper proposes a novel plasmonic sensor for biological applications such as single-stranded DNA detection that it is simulated and analyzed using the FDTD method. The sensor detects the adsorption of DNA molecules in the sensing solution (PBS) by changes in the reflectance of the structure. The mechanism of this sensor is based on the variation of refractive index with the absorption of different concentrations of molecules. The proposed structure consists of metal (gold/silver)-indium tin oxide (ITO)-graphene and an assay medium. The results showed that the ITO metal oxide layer plays an important role in the sensor parameters. By optimizing the thicknesses of metals (gold and silver), the metal oxide, and graphene, we obtained the maximum sensitivity of 75 deg/RIU for the gold-graphene-analyte structure and the maximum detection limit of 58.33 for the silver-ITO-analyte structure. The structures proposed in this paper outperform those presented in previous works. Thus, the proposed biosensor is able to open a new window for biomolecule detection.

کلیدواژه‌ها [English]

  • biosensor
  • Surface Plasmon
  • ITO
  • Graphene
  • DNA
[1] Bohunicky, B.; Mousa, S. A. “Biosensors: The New Wave in Cancer Diagnosis”; Nanotech. Sci. Appl. 2011, 4, 1.##

[2] Najafi, M.; Monzavi, M.; Taghizadeh, M. J. “Sensing Properties Investigation of Graphene Oxide Reduced by Various Agents for Detection of DMMP”; Adv. Defence Sci.
Technol. 2016, 10, 269-276.##

[3] Cheng, F. Y.; Chen, C. T.; Yeh, C. S. “Comparative Efficiencies of Photothermal Destruction of Malignant Cells Using Antibody-Coated Silica@Au Nanoshells, Hollow
Au/Ag Nanospheres and Au Nanorods”; Nanotechnology 2009, 20, 425104.##

[4] Bahabady, A. M.; Olyaee, S. “Two-Curve-Shaped Biosensor for Detecting Glucose Concentration and Salinity of Seawater Based on Photonic Crystal Nano-Ring Resonator”; Sensor Lett. 2015, 13, 774-777.##

[5] Minaei, M. E.; Saadati, M.; Najafi, M.; Honari, H. “Immobilization and Hybridization of DNA/DNA of the
rfbE Gene Escherichia Coli O157:H7 on Gold Electrode Surface for the Detection of Specific Sequences by
Electrochemical Impedance Spectroscopy Method”; Adv. Defence Sci. Technol. 2014, 4, 279-283.##
[6] Shushama, K. N.; Rana, M. M.; Inum, R.; Hossain, M. B. “Graphene Coated Fiber Optic Surface Plasmon Resonance Biosensor for the DNA Hybridization Detection: Simulation Analysis”; Opt. Commun. 2017, 383, 186-190.##

[7] Basabe-Desmonts, L.; Reinhoudt, D. N.; Crego-Calama, M. “Design of Fluorescent Materials for Chemical Sensing”; Chem. Soc Rev. 2007, 36, 993-1017.##

[8] Stich, M. I.; Fischer, L. H.; Wolfbeis, O. S. “Multiple Fluorescent Chemical Sensing and Imaging”; Chem. Soc. Rev. 2010, 39, 3102-3114.##

[9] Luo, Y.; Fan, R.; Zhang, Y.; Wu, Q.; Ren, Z.; Peng, B. “Novel Optical Fiber Refractive Sensor Fabricated with an Alcohol-Filled Photonic Crystal Fiber Based on a Mach–Zehnder Interferometer”; Opt. Fiber Technol. 2019, 48, 278-282.##

[10] Shahamat, Y.; Vahedi, M. “Mid-Infrared Plasmonically Induced Absorption and Transparency in a Si-Based Structure for Temperature Sensing and Switching Applications”; Opt. Commun. 2019, 430, 227-233.##

[11] Caucheteur, C.; Guo, T.; Albert, J. “Review of Plasmonic Fiber Optic Biochemical Sensors: Improving the Limit of Detection”; Anal. Bioanal. Chem. 2015, 407, 3883-3897.##

[12] Ksendzov, A.; Lin, Y. “Integrated Optics Ring-Resonator Sensors for Protein Detection”; Opt. Lett. 2005, 30, 3344-3346.##

[13] Chow, E.; Grot, A.; Mirkarimi, L. W.; Sigalas, M.; Girolami, G. “Ultracompact Biochemical Sensor Built with Two-Dimensional Photonic Crystal Microcavity”; Opt. Lett. 2004, 29, 1093-1095.##

[14] Shahamat, Y.; Vahedi, M. “Pump-Tuned Plasmon-Induced Transparency for Sensing and Switching Applications”; Opt. Commun. 2017, 401, 40-5.##

[15] Rodrigo, D.; Limaj, O.; Janner, D.; Etezadi, D.; De Abajo, F. J.; Pruneri, V.; Altug, H. “Mid-Infrared Plasmonic Biosensing with Graphene”; Science 2015, 349, 165-168.##

[16] Fan, X.; White, I. M.; Shopova, S. I.; Zhu, H.; Suter, J. D.; Sun, Y. “Sensitive Optical Biosensors for Unlabeled Targets”; Anal. Chem. Acta. 2008, 620, 8-26.##

[17] Farokhnezhad, M.; Esmaeilzadeh, M. “Optical and Photothermal Properties of Graphene Coated Au–Ag Hollow Nanoshells: A Modeling for Efficient Photothermal Therapy”; J. Phys. Chem. C. 123, 2019, 28907-28918.##

[18] Shahamat, Y.; Ghaffarinejad, A.; Vahedi, M. “Plasmon Induced Transparency and Refractive Index Sensing in Two Nanocavities and Double Nanodisk Resonators”; Optiks 2020, 202, 163618.##

[19] Yen, Y. C.; Chiu, N. F. “Plasmonic Biosensor Detected Human Chorionic Gonadotropin with Naked Eye in Optical Sensors”; Int. Soc. Opt. Photon. 2019, 11028, 1102823.##

[20] Shahamat, Yadollah, and Mohammad Vahedi. “Plasmon-induced transparency in a rectangle cavity and an H-shaped structure for sensing and switching applications”; J.
Nanophoton. 2017, 11, 046012.##

[21] Verma, A.; Prakash, A.; Tripathi, R. “Performance analysis of graphene based surface plasmon resonance Biosensors for Detection of Pseudomonas-Like Bacteria”; Opt. Quant. electron. 2015, 47, 1197-1205.##

[22] Maurya, J. B.; Prajapati, Y. K.; Singh, V.; Saini, J. P.; Tripathi, R. “Improved Performance of the Surface Plasmon Resonance Biosensor Based on Graphene or MoS2 Using Silicon”; Opt. Commun. 2016, 359, 426-34.##

[23] Saifur Rahman, M.; Shamim Anower, Md.; Rabiul Hasan, Md.; Biplob Hossain, Md.; Ismail Haque, Md. “Design and Numerical Analysis of Highly Sensitive Au-MoS2-Graphene Based Hybrid Surface Plasmon Resonance Biosensor”; Opt. Commun. 2015, 357, 106-112.##

[24] Shahamat, Y.; Vahedi, M. “Terahertz Plasmon-Induced Transparency Based on Asymmetric Dual-Disk Resonators Coupled to a Semiconductor InSb Waveguide and its Biosensor Application”; Opt. Eng. 2017, 56, 067109.##

[25] Kumar, N. J.; Maharana, P. K.; Jha, R. “Dielectric Over-layer Assisted Graphene, its Oxide and MoS2-Based Fibre Optic Sensor with High Field Enhancement”; J. Phy. D. 2017, 405112.##

[26]
“Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges”; Chem. Rev. 117, 2017, 9973-10042.##

[27] Shushama, K. N.; Rana, M. M.; Inum, R.; Hossain, M. B. “Graphene Coated Fiber Optic Surface Plasmon Resonance Biosensor for the DNA Hybridization Detection: Simulation Analysis”; Opt. Commun. 2017, 383, 186-90.##

[28] Szunerits, S.; Castel, X.; Boukherroub, R. “Surface Plasmon Resonance Investigation of Silver and Gold Films Coated with Thin Indium Tin Oxide Layers: Influence on Stability and Sensitivity”; J. Phys. Chem. C. 2008, 112, 15813-15817.##

[29] Han, L.; He, X.; Ge, L.; Huang, T.; Ding, H.; Wu, C.
“Comprehensive Study of SPR Biosensor Performance Based on Metal-ITO-Graphene/TMDC Hybrid Multilayer“; Plasmonics 2019, 14, 2021-2030.##

[30] Mishra, S. K.; Gupta, B. D. “Surface Plasmon Resonance Based Fiber Optic PH Sensor Utilizing Ag/ITO/Al/Hydrogel Layers“; Analyst 2013, 138, 2640-2646.##

[31] Chow, E.; Grot, A.; Mirkarimi, L. W.; Sigalas, M.; Girolami, G. “Ultracompact Biochemical Sensor Built with Two-Dimensional Photonic Crystal Microcavity“ Opt. Lett. 2004, 29, 1093-1098.##

[32] Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. “Ultrasensitive Photodetectors Based on Monolayer MoS2”; Nat. Nanotechnol. 2013, 8, 497.##

[33] Ouyang, Q.; Zeng, S.; Dinh, X. Q.; Coquet, P.; Yong, K. T. “Sensitivity Enhancement of MoS2 Nanosheet Based Surface Plasmon Resonance Biosensor”; Proc. Eng. 2016, 140, 134-139.##

[34] Maurya, J.; François, A.; Prajapati, Y. “Two-Dimensional Layered Nanomaterial-Based One-Dimensional Photonic Crystal Refractive Index Sensor”; Sensors 2018, 18, 857.##

[35] Wang, H.; Zhang, H.; Dong, J.; Hu, S.; Zhu, W.; Qiu, W.; Lu, H.; Yu, J.; Guan, H.; Gao, S.; Li, Z. “Sensitivity-Enhanced Surface Plasmon Resonance Sensor Utilizing a Tungsten Disulfide (WS2) Nanosheets Overlayer”; Photonics Res. 2018, 6, 485-91.##

[36] Shahamat, Y.; Vahedi, M. “Plasmon-Induced Transparency in a Rectangle Cavity and an H-shaped Structure for Sensing and Switching Applications”; J. Nanophotonic 2017, 11, 046012.##

[37] Mishra, A. K.; Mishra, S. K.; Gupta, B. D. “SPR Based Fiber Optic Sensor for Refractive Index Sensing with Enhanced Detection Accuracy and Figure of Merit in Visible Region”; Opt. Commun. 2015, 344, 86-91.##

[38] Wu, L.; Ling, Z.; Jiang, L.; Guo, J.; Dai, X.; Xiang, Y.; Fan, D. “Long-Range Surface Plasmon with Graphene for Enhancing the Sensitivity and Detection Accuracy of Biosensor”; IEEE Photonic J. 2016, 8, 1-9.##
[39] Franzen, S. “Surface Plasmon Polaritons and Screened Plasma Absorption in Indium Tin Oxide Compared to Silver and Gold”; J. Phys. Chem C. 2008, 112, 6027-6032.##

[40] Hori, Y.; Hirai, A.; Minoshima, K.; Matsumoto, H. “High-Accuracy Interferometer with a Prism Pair for Measurement of the Absolute Refractive Index of Glass”; Appl. Optics 2009, 48, 2045-2050.##

[41] Wijaya, E.; Lenaerts, C.; Maricot, S.; Hastanin, J.; Habraken, S.; Vilcot, J. P.; Boukherroub, R.; Szunerits, S. “Surface Plasmon Resonance-Based Biosensors: from the Development of Different SPR Structures to Novel Surface Functionalization Strategies”; Curr. Opin. Solid ST M. 2011, 15, 208-24.##

[42] Han, L.; Zhao, X.; Huang, T.; Ding, H.; Wu, C.“Comprehensive Study of Phase-Sensitive SPR Sensor Based on Metal–ITO Hybrid Multilayer”; Plasmonic 2019, 1-8.##

[43] Taflove, A.; Oskooi, A.; Johnson, S. G.; editors. “Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology”; Artech House, 2013.##

[44] Huang, T.; Zeng, S.; Zhao, X.; Cheng, Z.; Shum, P. “Fano Resonance Enhanced Surface Plasmon Resonance Sensors Operating in Near-Infrared”; Photonics 2018, 5, 23.##

[45] Tamersit, K.; Djeffal, F. “Double-Gate Graphene Nanoribbon Field-Effect Transistor for DNA and Gas Sensing Applications: Simulation Study and Sensitivity Analysis”; IEEE Sensors 2016, 16, 4180-4191.##

[46] Hossain, M.; Rana, M. “Graphene Coated High Sensitive Surface Plasmon Resonance Biosensor for Sensing DNA Hybridization”; Sensor. Lett. 2016, 14, 145-152.##

[47] Diéguez, L.; Darwish, N.; Mir, M.; Martínez, E.; Moreno, M.; Samitier, J. “Effect of the Refractive Index of Buffer Solutions in Evanescent Optical Biosensors”; Sensor Lett. 2009, 7, 851-855.##

[48] Shushama, K. N.; Rana, M. M.; Inum, R.; Hossain, M. B. “Graphene Coated Fiber Optic Surface Plasmon Resonance Biosensor for the DNA Hybridization Detection: Simulation Analysis”; Opt. Commun. 2017, 383, 186.##