الگوریتم جدید به منظور پیش‌بینی سریع وضعیت پایداری زاویه‌ای گذرا در سیستم‌های قدرت

نوع مقاله : قدرت- انتقال و توزیع

نویسندگان

1 استادیار گروه قدرت دانشکده برق دانشگاه صنعتی سهند

2 کارشناس ارشد دانشکده برق دانشگاه صنعتی سهند

چکیده

در این مقاله روشی نوین برای پیش‌بینی وضعیت پایداری زاویه‌ای گذرا بدون استفاده از اطلاعاتِ پس از پاک شدن خطا ارائه شده است. با توجه به اینکه این الگوریتم از اطلاعات اندازه‌گیری شده پیش از پاک شدن خطا استفاده می‌کند، قابلیت پیش‌بینی سریع وضعیت پایداری را دارد و لذا فرصت مناسب برای اپراتورها و/یا سیستم‌های حفاظت ویژه جهت اجرای اقدامات اصلاح‌کننده به‌موقع به‌منظور جلوگیری از وقوع ناپایداری و مقابله با حملات خرابکارانه فراهم می‌کند. در این روش، اندازه‌گیری‌های انجام‌شده توسط واحد‌های ‌اندازه‌گیری ‌فازور به‌عنوان ورودی به الگوریتم اعمال می‌شوند تا ویژگی‌های پیشنهادشده محاسبه و سپس به یک طبقه‌بندی‌کننده (درخت‌ تصمیم‌گیری یا ماشین‌بردار پشتیبان) اعمال گردند تا وضعیت پایداری پیش‌بینی شود. نتایج شبیه‌سازی‌ها در شبکه‌هایIEEE14-bus ، IEEE39-bus، و
16-Machine(68-bus) و مقایسه آنها با روش‌های پیشین نشان می‌‌دهد که این الگوریتم، ضمن استفاده از واحدهای اندازه‌گیری ‌فازور کمتر، با دقت بالاتری وضعیت پایداری زاویه‌ای را پیش‌بینی می‌کند و ابزار مناسبی جهت تشخیص وضعیت امنیت است. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Novel Approach for Fast Prediction of Transient Angle Stability Status in Power Systems

نویسندگان [English]

  • H. Khoshkhoo 1
  • M. Shahriyari 2
1 Department of Electrical Engineering, Sahand University of Technology
2 Department of Electrical Engineering, Sahand University of Technology
چکیده [English]

In this paper a novel approach is proposed to predict transient angle stability status without using post-fault data. Since this algorithm uses data measured before the fault clearance, it has the ability to quickly predict the stability status and hence, it provides proper opportunity for system operators and/or special protection systems to implement timely corrective actions to prevent instability and confront malicious attacks. In this method, those measurements provided by Phasor Measurement Units (PMUs) are applied as input to the algorithm to calculate the proposed feature set and apply them to a classifier (Decision Tree or Support Vector Machine) in order to predict the stability status. The results of simulations performed in IEEE 14-bus, IEEE 39-bus, and 16-Machine (68-bus) test systems and comparison of them with previous ones reveal that although the proposed method requires less PMUs, it can predict the stability status more accurately and is an appropriate tool to assess the system security.

کلیدواژه‌ها [English]

  • Large-disturbance (transient) angle stability prediction
  • security assessment
  • during the fault period
  • wide area measurement system
  • artificial intelligence
[1] Ghaffarpour, R.; Pourmousa, A. A.; Ranjbar, A. “Presenting an Index for Evaluation of Power Network Security Using Fuzzy Set Theory”; Adv. Defence Sci. Technol. 2016, 10, 289-304 (In Persian).##

[2] Ranjbar, M. H.; Mardani, M.; Pirayesh, A. “Presenting a Model for Evaluation of the Physical Protection of Critical Installations for Passive Defense against Physical and Sabotage Threats”; Adv. Defence Sci. Technol. 2017, 8, 387-398 (In Persian).##

[3] Cepeda, J. C.; Rueda, J. L.; Colomé, D. G.; Echeverría, D. E. “Real-Time Transient Stability Assessment Based on Centre-of-Inertia Estimation From Phasor Measurement Unit Records”; IET Gen. Tranms. Distrib. 2014, 8, 1363-1376.##
[4] Rajapakse, A. D.; Gomez, F.; Nanayakkara, K.; Crossley, P. A.; Terzija, V. V. “Rotor Angle Instability Prediction Using Post-Disturbance Voltage Trajectories”; IEEE Trans. Power Syst. 2010, 25, 947-956.##

[5] Kundur, P.; Balu, N. J.; Lauby, G. “Power System Stability and Control”; McGraw-Hill: New York. 1994.##

[6] Kundur, P. “Definition and Classification of Power System Stability”; IEEE Trans. Power Syst. 2004, 19, 1387-1401.##

[7] Gou, J.; Liu, Y.; Liu, J.; Taylor, G. A.; Alamuti, M. M. “Novel Pair-Wise Relative Energy Function for Transient Stability Analysis and Real-Time Emergency Control”; IET Gen. Transm. Distrib. 2017, 11, 4565-4575.##

[8] Tang, L.; Sun, W. “An Automated Transient Stability Constrained Optimal Power Flow Based on Trajectory Sensitivity Analysis”; IEEE Trans. Power Syst. 2017, 32, 590-599.##

[9] Li, Z.; Yao, G.; Geng, G.; Jiang, Q. “An Efficient Optimal Control Method for Open-Loop Transient Stability Emergency Control”; IEEE Trans. Power Syst. 2017, 32, 2704-2713.##

[10] Sharma, S.; Pushpak, S.; Chinde, V.; Dobson, I. “Sensitivity of Transient Stability Critical Clearing Time”; IEEE Trans. Power Syst. 2018, 33, 6476-6486.##

[11] Tajdinian, M.; Seifi, A. R.; Allahbakhshi, M. “Sensitivity-Based Approach for Real-Time Evaluation of Transient Stability of Wind Turbines Interconnected to Power Grids”; IET Renewable Power Gener. 2018, 12, 668-679.##

[12] Jahromi, M. Z.; Kouhsari, S. M. “A High-Precision Real-Time Approach to calculate Closest Unstable Equilibrium Points”; Int. J. Electr. Power Energy Syst. 2017, 89, 82–93.##

[13] Wang, S.; Yu, J.; Zhang, W. “Transient Stability Assessment Using Individual Machine Equal Area Criterion Part I: Unity Principle”; IEEE Access. 2018, 6, 77065-77076.##

[14] Kamali, S.; Amraee, T.; Capitanescu, F. “Controlled Network Splitting Considering Transient Stability Constraints”; IET Gen. Transm. Distrib. 2018, 12, 5639-5648.##

[15] Hashiesh, F.; Mostafa, H. E.; Helal, I.; Mansour, M. M. “A Wide Area Synchrophasor Based ANN Transient Stability Predictor for the Egyptian Power System”; IEEE PES Innovative Smart Grid Technol. Conf. 2010, 1-7.##

[16] Amjady, N.; Majedi, S. F. “Transient Stability Prediction by a Hybrid Intelligent System”; IEEE Trans. Power Syst. 2007, 22, 1275-1283.##

[17] Huang, D.; Yang, X.; Chen, S.; Meng, T. “Wide-Area Measurement System-Based Model-Free Approach of Post-Fault Rotor Angle Trajectory Prediction for Online Transient Instability Detection”; IET Gen. Transm. Distrib. 2018, 12, 2425-2435.##

[18] Bhui, P.; Senroy, N. “Real-Time Prediction and Control of Transient Stability Using Transient Energy Function”; IEEE Trans. Power Syst. 2017, 32, 923-934.##

[19] Kamwa, I.; Samantaray, S.; Joos, G. “Development of Rule-Based Classifiers for Rapid Stability Assessment of Wide-Area Post-Disturbance Records”; IEEE Trans. Power Syst. 2009, 24, 258-270.##

[20] Mazhari, S. M.; Safari, N.; Chung, C.; Kamwa, I. “A Hybrid Fault Cluster and Thévenin Equivalent Based Framework for Rotor Angle Stability Prediction”; IEEE Trans. Power Syst. 2018, 33, 5594-5603.##

[21] Frimpong, E. A.; Okyere, P. Y.; Asumadu, J. “Prediction of Transient Stability Status Using Walsh-Hadamard Transform and Support Vector Machine”; IEEE PES Power Africa 2017, 301-306.##

[22] Mahmoud, T. K.; Dong, Z. Y.; Ma, J. “A Developed Integrated Scheme Based Approach for Wind Turbine Intelligent Control”; IEEE Trans. Sustainable Energy 2017, 8,927-937.##

[23] Sun, K.; Likhate, S.; Vittal, V.; Kolluri, V. S.; Mandal, S. “An Online Dynamic Security Assessment Scheme Using Phasor Measurements and Decision Trees”; IEEE Trans. Power Syst. 2007, 22, 1935-1943.##

[24] Gomez, F. R.; Rajapakse, A. D.; Annakkage, U. D.; Fernando, I. T. “Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status Prediction Using Synchronized Measurements”; IEEE Trans. Power Syst. 2011, 26, 1474-1483.##

[25] Gordon, M. “Impact of Load Behavior on Transient Stability and Power Transfer Limitations”; IEEE Power Eng. Society General Meeting, 2009.##

[26] Diao, R. “Decision Tree-Based Online Voltage Security Assessment Using PMU Measurements”; IEEE Trans. Power Syst. 2009, 24, 832-839.##

[27] Tsang, R. “Cyberthreats, Vulnerabilities and Attacks on SCADA Networks”; University of California, Berkeley. 2010.##

[28] Tripathi, S.; De, S. “Assessment of Power System Stability Using Reduced-Rate Synchrophasor Data”; IEEE Int. Conf. Adv. Networks and Telecommuncations Syst. 2015.##

[29] Committee, P. S. R. “IEEE Standards for Synchrophasor Measurements for Power Systems-IEEE Std C37. 118.1-2011”; New York, 2011.##

[30] Khoshkhoo, H.; Shahrtash, S. M. “Fast Online Dynamic Voltage Instability Prediction and Voltage Stability Classification”; IET Gen. Transm. Distrib. 2014, 8, 957-965.##

[31] Burges, C. J. “A Tutorial on Support Vector Machines for Pattern Recognition”; Data Mining and Knowledge Discovery 1998, 2, 121-167.##

[32] Cristianini, N.; Shawe-Taylor, J. “An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods”; Cambridge University Press, 2000.##

[33] Khoshkhoo, H.; Shahrtash, S. “Dynamic Small Disturbance Voltage Instability Prediction Based on Wide Area Measurement System”; IEEE Int. Power Eng. Optimization Conf. Melaka, Malaysia, 2012, 214-219.##

[34] Kecman, V. “Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models”; MIT Press, 2001.##

[35] Chen, J.; Shao, J. “Nearest Neighbor Imputation for Survey Data”; Journal of Official Statistics 2000, 16, 113-131.##