طراحی و شبیه‏ سازی سامانه شبه‏ اپتیک عبوری جهت تصویربردار موج میلی‏متری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا- مجتمع دانشگاهی برق و کامپیوتر- دانشگاه صنعتی مالک اشتر- لویزان- تهران

2 دانشکده الکترونیک- دانشگاه صنعتی مالک اشتر

3 مجتمع دانشگاهی برق و کامپیوتر- دانشگاه صنعتی مالک اشتر- لویزان- تهران- ایران

چکیده

در این مقاله یک آنتن شبه‏اپتیک تصویربردار موج میلی‏متری در فرکانس مرکزی 94 گیگاهرتز در باند W طراحی‌شده است. سامانه تصویربردار طراحی‌شده جهت تشخیص اشیای فلزی در فاصله 5 متری به تفکیک‏پذیری کمتر از 30 میلی‏متر نیاز دارد. این سامانه غیرفعال شامل ترکیبی از یک عدسی دی‏الکتریک (اپتیک اولیه) جهت کانونی کردن تابش و یک هورن هرمی (اپتیک ثانویه) با دیواره‏های فلزی بازشونده برای هدایت و تزویج مناسب تابش کانونی‌شده، به آشکارساز است. پارامترهای کلی این سامانه با استفاده از روش اپتیک هندسی محاسبه ‌شده است. در ادامه ترکیبی از روش باریکه گاوسی و ماتریس انتقال پرتو ABCD برای تجزیه‌وتحلیل آنتن عدسی جهت یافتن محل و اندازه هورن تغذیه استفاده شده است. از نرم‏افزار قدرتمند طراحی اپتیکی ZEMAX برای طراحی عدسی و تصدیق نتایج طراحی بر اساس ردیابی پرتو استفاده‏ شده است. در طراحی و شبیه‏سازی عدسی دی‏الکتریک، ماده پلی‏اتیلن بسیار چگال (HDPE) با قطر دهانه 650 میلی‏متر به­کار رفته است. سپس یک هورن هرمی بهینه با بهره 9/18 دسی‏بل در فرکانس مرکزی 94 گیگاهرتز طراحی ‏شده است. شبیه‏سازی هورن و بررسی نتایج آن با استفاده از نرم‏افزارهای تجاری FEKO و CST انجام شد. نتایج شبیه‏سازی آنتن‏ هورن هرمی نشان می‏دهد که ترکیب آن با عدسی دی‏الکتریک مناسب است و روش تلفیقی (اپتیک هندسی، باریکه گاوسی و ماتریس ABCD) برای طراحی سامانه شبه‏اپتیک شامل عدسی و هورن برای تصویربرداری با الزامات موردنظر دقیق، ساده و کارآمد است.

کلیدواژه‌ها


عنوان مقاله [English]

Design and Simulation of a Refractive Quasi-Optical System for Millimetre Wave Imaging

نویسندگان [English]

  • F. Jadidi 1
  • A. Eslami Majd 2
  • A. Erfanian 3
  • S. H. Mohseni Armaki 3
1 PhD Student- Maleke-Ashtar University of Technology- Lavizan- Tehran
2 Electronic department, Malek ashtar university
3 Department of Electrical and Computer Engineering- Maleke- Ashtar University of Technology- Lavizan- Tehran- Iran
چکیده [English]

In this paper, a quasi-optical millimeter wave imaging antenna at central frequency of 94 GHz in W-band is designed. The designed imaging system requires resolution less than 30 mm at distance of 5 meters to recognize metal objects. This passive system consists of a combination of a dielectric lens (primary optics) to focus the radiation and a pyramidal horn (secondary optics) with open metal walls to properly direct and couple the focal radiation to the detector. The general parameters of this system are calculated using the geometrical optics method. Then the combination of Gaussian beam method and ABCD ray transfer matrix is used to analyze the lens antenna to find the location and size of the feeding horn. The powerful optical design software ZEMAX was used to design the lens and to verify the design results based on ray tracing. The designed dielectric lens is made of High Density Polyethylene (HDPE) with a diameter of 650 mm. Then, an optimized pyramidal horn with gain of 18.9 dB at center frequency of 94 GHz is designed. The simulation of the horn and investigation of its results performed using the FEKO and CST commercial softwares. The simulation results of the pyramid horn antenna indicate that its combination with dielectric lens is appropriate and the hybrid method (geometrical optics, Gaussian beam and ABCD matrix) to design the quasi-optical system, including the lens and the horn antenna for imaging with considered requirements, is accurate, simple and efficient.

کلیدواژه‌ها [English]

  • Millimetre Wave Imaging
  • Quasi-Optic Antenna
  • Optical Design
  • Gaussian Beam Method
[1]      Zhou, J.; Chen, Q.; Zhang, Y.; Fan, Y.; Da Xu, K. “Aspheric Dielectric Lens Antenna for Millimeter-wave Imaging System”; Asia PACIF. Microwave 2015, 1-3.##
[2]      Sheen, D. M.; McMakin, D. L.; Hall, T. E. “Three-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection”; IEEE Trans. Microwave Theory 2001, 49, 1581-1592.##
[3]      Duric, A.; Magun, A. “Antenna Design for an Imaging Radiometer at 94GHz”; Proc. Int. ITG Conf. Antennas 2003, 257-260.##
[4]      Taylor, C. T. “Enhancement of Imagery From Passive Millimetre-wave Systems for Security Scanning”; Ph.D. Thesis, The University of Manchester, Manchester, 2015.##
[5]      Chen, Q.; Fan, Y.; Zhou, J.; Song, K. “Design of Quasi-Optical Lens Antenna for W-Band Short Range Passive Millimeter-Wave Imaging”; J. Comput. Com. 2015, 3, 93-99.##
[6]      Kim, W. G.; Moon, N. W.; Singh, M. K.; Kim, H. K.; Kim, Y. H. “Characteristic Analysis of Aspheric Quasi-optical Lens Antenna in Millimeter-wave Radiometer Imaging System”; Appl. Optics 2013, 52, 1122-1131.##
[7]      Wiltse, J. C. “History of Millimeter and Submillimeter Waves”; IEEE Trans. Microw. Theory 1984, 32, 1118-1127.##
[8]      Ditchfield, C.; England, T. “Passive Detection at Q Band”; RRE. Memo. 1955, 1124.##
[9]      Appleby, R.; Anderton, R. N. “Millimeter-Wave and Submillimeter-wave Imaging for Security and Surveillance”; Proc. IEEE, 2007, 95, 1683-1690.##
[10]   Lettington, A.; Alexander, N.; Dunn, D. “A New Opto-mechanical Scanner for Millimeter and Sub-millimeter Wave Imaging”; Proc. Soc. Photo-Opt INS. 2005, 5789, 16-24.##
[11]   Gao, X.; Li, C.; Gu, S.; Fang, G. “Design, Analysis and Measurement of a Millimeter Wave Antenna Suitable for Stand Off Imaging at Checkpoints”; J. Infrared. Millim. TE. 2011, 32, 1314-1327.##
[12]   Meng, Y.; Qing, A.; Lin, C.; Zang, J.;  Zhao, Y.; Zhang, C. “Passive Millimeter Wave Imaging System Based on Helical Scanning”; SCI. REP-UK. 2018, 8.##
[13]   Yeom, S.; Lee, D. S.; Son, J. Y.; Jung, M. K.; Jang, Y.; Jung, S.-W. “Real-time Outdoor Concealed-Object Detection with Passive Millimeter Wave Imaging”; Opt. Express 2011, 19, 2530-2536.##
[14]   Jinghui, Q.; Zhong, Z.; Kai, L.; Gaofei, L.; Fei, X. “Design and Measurement of Quasi-optics for Millimeter Wave Imaging System”; IEEE Int. Workshop Imaging Systems and Techniques 2009, 132-135.##
[15]   Li, C.-M.; Huang, C.-Y.; Chang, L.-Y.; Yu, Y.-C.; Nien, C.-C.; Tarng, J.-H. “Development of a Compact Total Power Passive Millimeter-Wave Imaging System”; IEEE Int. Symp. Rf. 2011, 153-156.##
[16]   Bevan, M. “Electromagnetic Analysis of Horn Antennas in the Terahertz Region”; Thesis, National University of Ireland Maynooth, 2013.##
[17]   Goldsmith, P. F. “Quasioptical Systems”; Chapman & Hall, 1998.##
[18]   Jing-Hui, Q.; Nan-Nan, W.; Yi-Chi, Z.; Cai-Tian, Y.; Wei-Bo, D. “Research on Quasi-optics and Feed Antenna for Millimeter Wave Imaging System”; Proc. 9th Int. Symposium on Antennas, Propagation and EM Theory 2010, 45-48.##
[19]   Milligan, T. A. “Modern Antenna Design”; Wiley Online Library, 2005.##
[20]   Fischer, R. E.; Tadic-Galeb, B.; Yoder, P. R.; Galeb, R.; Kress, B. C.; McClain, S. C. “Optical System Design”; Citeseer, 2000.##
[21]   Chen, Q.; Fan, Y.; Song, K. “Optimized Design of W-Band Quasi-Optical Lens by Using Optical Simulator and Numerical Analysis”; Prog. Elect. Res. 2016, 46, 173-181.##
[22]   Moffa, P.; Yujiri, L.; Agravante, H. H.; De Amici, G.; Dixon, D.; Fornaca, S. W. “Large-aperture Passive Millimeter-wave Pushbroom Camera”; PROC. Soc. Photo-Opt. Ins. 2001, 4373, 1-7.##
[23]   Malakzadeh, A.; Kamjoo, M. J.;  Zare Kalate, S. R.  “Simulation of Kerr Lens Behavior in a Ti:Sapphire Oscillator with Symmetric and Asymmetric Resenator”; Adv. Defence Sci. Technol. 2016, 6, 59-70.##
[24]   Goldsmith, P. F. “Quasi-optical Techniques”; Proc. IEEE 1992, 80, 1729-1747.##
[25]   O'Sullivan C. M.; Murphy, J. A. “Field Guide to Terahertz Sources, Detectors, and Optics”; SPIE Press Book, 2012.##
[26]   Alireza, K.; Martin, H. C.; Robert, D.; Mohammed, S.; Thomas, K. O.; Thorsten, S. “The Horn Antenna as Gaussian Source in the MM-Wave Domain”; J. Infrared Millim. TE. 2014, 35, 720–731.##
[27]   Wade, P. “Multiple Reflector Dish Antennas”; ed, 2004.##
[28]   Svedin, J.; Huss, L. G. “A 94 GHz Imaging Radar System”; Swedish Defence Research Agency, Sensor Technology, Technical Report, FOI-R-1191-SE, 2004.##
[29]   Tran, H. P.; Gumbmann, F.; Weinzierl, J.; Schmidt, L. P. “A Fast Scanning W-Band System for Advanced Millimetre-wave Short Range Imaging Applications”; EUROP. Radar Conf. 2006, 146-149.##
[30]   Raymond, C.; Ronca, S. “Relation of Structure to Electrical and Optical Properties”; Brydson's Plastics Materials, ed: Elsevier, 2017, 103-125.##
[31]   Lamb, J. W. “Miscellaneous Data on Materials for Millimetre and Submillimetre Optics”; J. Infrared Millim. TE. 1996, 17, 1997-2034.##
[32]   Barik, B. R.; Kalirasu, A. “Design of a UHF Pyramidal Horn Antenna Using CST”; J. Pure Appl. 2017, 114, 447-457.##