آنتن شکاف حلقوی تکه‌ای با قابلیت سوئیچ فرکانس برای مقابله با اختلال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم وفنون هوایی شهید ستاری

2 دانشگاه صنعتی مالک اشتر

چکیده

در این مقاله، یک آنتن جدید و کم‌حجم از نوع شکاف به شکل حلقوی تکه­ای با قابلیت سوئیچ فرکانسی در حالت­های باند باریک و پهن ­باند به‌منظور کاربرد در شبکه­های بی‌سیم ارائه شده است. قابلیت تنظیم فرکانسی به‌ویژه از حالت­های پهن باند به باند باریک به‌طور قابل‌ملاحظه‌ای می­تواند باعث مصون ماندن سامانه از اختلال و نویز گردد. در این آنتن، با قرار دادن دیودهای پین روی یک شکاف نسبتاً پهن، برای نخستین بار ترکیبی از دو حالت پهن باند و شش حالت­ باند باریک ایجاد شده است. شکاف در صفحه زمینی به ابعاد  36×33 ایجاد شده است. محدوده فرکانسی ضرایب انعکاس اندازه‌گیری­شده به­ازای 10- < S11  برای حالت پهن باند اول در بازه  GHz 48/5-47/3    و برای حالت پهن باند دوم در بازه GHz 37/7-2/5 است. محدوده عملکرد حالت­های باند باریک نیز از GHz 3-61/2 برای تشدید اول و  GHz 5/5-88/4 برای تشدید دوم است. از آنتن پیشنهادی می­توان برای کاربردهایی مانند WLAN IEEE 802.11a  (GHz 8/5-1/5)، WiMAX (GHz 8/2-5/2)، زیر باندهای طیف فوق پهن­باند مانند (GHz 5-5/3) و (GHz 5/6-5) و نیز رادارهای باند C بهره برد.



 

کلیدواژه‌ها


عنوان مقاله [English]

Frequency Switchable Ring Sector Slot Antenna for Jamming Immunity

نویسندگان [English]

  • M. Bayat 1
  • M. Gholam rezaei 2
  • R. Hooshmand 1
1 Shahid Sattari Aeronautical University of Science & Technology
2 Malek-Ashtar University of Technology
چکیده [English]

In this paper, a novel low-profile switchable narrow and wide band circular ring sector slot antenna is presented for wireless applications. Adjustable operating frequencies especially with the ability of switching between narrow and wide band modes could provide considerable immunity from jamming and noises. The combination of two wideband and six narrowband modes are provided using PIN diode switches inserted on the relatively wide slot. The slot is etched in the ground plane with the size of 33×36 mm2. The results show the operating frequency bands of 3.47-5.48 GHz for the first wideband operation and 5.2-7.37 GHz for the second wideband operation with S111) and second (f2) resonances, respectively. The proposed antenna is suitable for applications such as WLAN IEEE 802.11a (5.1 to 5.8 GHz), WiMAX (2.5–2.8 GHz), the ultra wideband (UWB) sub-band groups (3.5–5 GHz and 5–6.5 GHz) and also C-band radars.

کلیدواژه‌ها [English]

  • Narrow/Wide-Band
  • Jamming and Noise Immunity
  • Switchable Antenna
  • Ring Sector Slot Antenna
[1]     Nguyen-Trong, N.; Fumeaux, C. “Tuning Range and Efficiency Optimization of a Frequency-Reconfigurable Patch Antenna” IEEE Antennas & Wireless Propag. Lett. 2018, 17, 150-154.##
[2]     Lu, Z. L.; Yang, X. X.; Tan, G. N. “A Multidirectional Pattern-Reconfigurable Patch Antenna with CSRR on the Ground”; IEEE Antennas & Wireless Propag. Lett. 2017, 16, 416-419.##
[3]     Lin, W.; Wong, H. “Wideband Circular Polarization Reconfigurable Antenna”; IEEE Trans. Antennas & Propag. 2015, 63, 5938-5944.##
[4]     Shirazi, M.; Huang, J.; Li, T.; Gong, X. “A Switchable-Frequency Slot-Ring Antenna Element for Designing a Reconfigurable Array”; IEEE Antennas & Wireless Propag. Lett. 2018, 17, 229-233.##
[5]     Wright, M. D.; Baron, W.; Miller, J.; Tuss, J.; Zeppettella, D.; Ali, M. “MEMS Reconfigurable Broadband Patch Antenna for Conformal Applications”; IEEE Trans. Antennas & Propag. 2018, 66, 2770-2778.##
[6]     Jouade, A.; Himdi, M.; Chauloux, A.; Colombel, F. “Mechanically Pattern-Reconfigurable Bended Horn Antenna for High-Power Applications”; IEEE Antennas & Wireless Propag. Lett. 2017, 16, 457-460.##
[7]       Tang, X.; Khodasevych, I. E.; Rowe, W. S. T. “Reconfigurable Split-Ring Resonators Using Pneumatic Levitation System”; IEEE Trans. Antennas & Propag. 2018, 66, 763-770.##
[8]     Da Costa, I. F.; Cerqueira, A.; Spadoti, D. H.; da Silva, L. G.; Ribeiro, J. A. J.; Barbin, S. E. “Optically Controlled Reconfigurable Antenna Array for mm-Wave Applications”; IEEE Antennas & Wireless Propag. Lett. 2017, 16, 2142-2145.##
[9]     Wang, C.; Yeo, J. C.; Chu, H.; Lim, C. T.; Guo, Y. X. “Design of a Reconfigurable Patch Antenna Using the Movement of Liquid Metal”; IEEE Ant. & Wireless Propag. L. 2018, 17, 974-977.##
[10]  Bayat, M.; Madani, M. H. “Design and Simulation of a Linear Adaptive System to Remove the CWI in Loran Navigation System Receivers”; Adv. Defence Sci. & Technol. 2018, 04, 267-277.##
[11]  Stasiak, K.; Ciesielski, M.; Kurowska, A.; Przybysz, W. “A Study on using Different Kinds of Continuous-Wave Radars Operating in C-Band for Drone Detection”; Proc. International Microwave and Radar Conference, MIKON, Poznan, Poland, 2018, 521-526.##
[12]  Qin, F.; Gao, S.; Luo, Q.; Mao, C.; Gu, C.;  Wei, G; Xu, J.; Li, J.; Wu, C.; Zheng, K.; Zheng, S. “A Simple Low-Cost Shared-Aperture Dual-Band Dual-Polarized High-Gain Antenna for Synthetic Aperture Radars”; IEEE Trans. Antennas & Propag. 2016, 64, 2914-2922.##
[13]  Ndini, K.; Gromek, D.; Wielgo, M.; Samczyński, P.; Malanowski, M. “C-Band FMCW Radar Analogue-Front-End for SAR/ISAR Applications”; Proc. Signal Processing Symposium, Debe, Poland, 2015, 1-5.##
[14]  Eldek, A.; Elsherbeni, A. Z.; Smith, C. E. “Wide-Band Modified Printed Bow-Tie Antenna with Single and Dual Polarization for C - and X-Band Applications”; IEEE Trans. Antennas & Propag. 2005, 53, 3067-3072.##
[15]  Wang, S.; Zhu, L.; Wu, W. “A Novel Frequency-Reconfigurable Patch Antenna Using Low-Loss Transformer Oil”; IEEE Trans. Antennas & Propag. 2017, 65, 7316-7321.##
[16]  Han, L.; Wang, C.; Chen, X.; Zhang, W. “Compact Frequency-Reconfigurable Slot Antenna for Wireless Applications”; IEEE Antennas & Wireless Propag. Lett. 2016, 15, 1795-1798.##
[17]  Yang, X. l.; Lin, J. c.; Chen, G.; Kong, F. l. “Frequency Reconfigurable Antenna for Wireless Communications Using Gaas FET Switch”; IEEE Antennas & Wireless Propag. Lett. 2015, 14, 807-810.##
[18]  Sim, C. Y. S.; Han, T. Y.; Liao, Y. J. “A Frequency Reconfigurable Half Annular Ring Slot Antenna Design”; IEEE Trans. Antennas & Propag. 2014, 62, 3428-3431.##
[19]  Nassar, I. T.; Weller, T. M.; Lusk, C. P. “Radiating Shape-Shifting Surface Based on a Planar Hoberman Mechanism”; IEEE Trans. Antennas & Propag. 2013, 2861-2864.##
[20]  Chen, G.; Yang, X.; Wang, Y. “Dual-Band Frequency-Reconfigurable Folded Slot Antenna for Wireless Communications”; IEEE Antennas & Wireless Propag. Lett. 2012, 11, 1386-1389.##
[21]  Bitchikh, M.; Mokhtari, M.; Rili, W. “Switchable UWB/Narrowband/Bi-Bands Octagonal Antenna using PIN diodes”; Electronics Lett. 2018, 54, 480-482.##
[22]  Tang, M. C.; Wen, Z.; Wang, H.; Li, M.; Ziolkowski, R. W. “Compact, Frequency-Reconfigurable Filtenna with Sharply Defined Wideband and Continuously Tunable Narrowband States”; IEEE Trans. Antennas & Propag. 2017, 65, 5026-5034.##
[23]  Qin, P. Y.; Wei, F.; Guo, Y. J. “A Wideband-to-Narrowband Tunable Antenna using a Reconfigurable Filter”; IEEE Trans. Antennas & Propag. 2015, 63, 2282-2285.##
[24]  Danesh, S.; Rahim, S.K.A.; Abedian, M.; Khalily, M.; Hamid, M.R. “Frequency-Reconfigurable Rectangular Dielectric Resonator Antenna”; IEEE Antennas & Wireless Propag. Lett. 2013, 12, 1331-1334.##
[25]  Garg, R.; Bhartia, P.; Bahl, I.; Ittipiboon, A. “Microstrip Antenna Design Handbook”; Norwood, M.A. USA, Artech House, 2001, 441–448.##
[26]  Kahrizi, M.; Sarkar, T. K.; Maricevic, Z. A. “Analysis of a Wideradiating Slot in the Ground Plane of a Microstrip Line”; IEEE Trans. Micro. Theory & Technol. 1993, 41, 29-37.##
[27]  Balanis, C. A. “Antenna Theory: Analysis and Design”; Wiley, 1996, 575-644.##
[28]  Yi, X.; Huitema, L.; Wong, H. “Polarization and Pattern Reconfigurable Cuboid Quadrifilar Helical Antenna”; IEEE Trans. Antennas & Propag. 2018, 66, 2707-2715.##
[29]  Infineon, Tech. PIN Diode BAR50-02V Datasheet, 2013.##
[30]  Ge, L.; Li, M.; Wang, J.; Gu, H. “Unidirectional Dual-Band Stacked Patch Antenna with Independent Frequency Reconfiguration”; IEEE Antennas & Wireless Propag. Lett. 2017, 113-116.##
[31]  Zhang, L.; Zhang, S.; Liu, Y.; Liu, Q. H. “Broadband Tunable Frequency Selective Surface for Steerable Antenna Applications”; IEEE Trans. Antennas & Propag. 2016, 64, 5496-5500.##