شبیه‌سازی عددی اثر نیروی محوری بر تغییر شکل جانبی ستون بتنی با غلاف فولادی دوپوسته زیر بار انفجار

نوع مقاله : عمران - سازه

نویسندگان

دانشگاه بین‌المللی امام خمینی (ره)، قزوین

چکیده

با افزایش روزافزون کاربرد ستون‌های بتنی با غلاف فولادی دوبل، این مطالعه به بررسی اثر نیروی محوری فشاری بر تغییر شکل جانبی ستون ناشی از موج انفجار با استفاده از شبیه‌سازی عددی در نرم‌افزار AUTODYN پرداخته است. بدین منظور ستون بتنی CFDST با مقطع مربع و سطوح مختلف بار محوری (نسبت بار به ظرفیت محوری ستون از 0 تا 80%) مدل‌سازی و تحت بارگذاری انفجار 35کیلوگرم TNT قرار گرفتند. تحقیق حاضر نشان می‌دهد برای سطوح پایین بار محوری تغییر مکان بیشینه و ماندگار و نیز شاخص آسیب ستون ناشی از بار جانبی انفجار، با افزایش بار محوری فشاری کاهش یافته است ولی با افزایش بار فشاری از 6/0 ظرفیت محوری ستون، پارامترهای فوق افزایش می‌یابند. همچنین با استفاده از ضخامت برابر برای ورق‌های فولادی داخلی و خارجی، می‌توان به کمترین تغییر شکل و آسیب ستون نسبت به حالتی که پوشش‌ها دارای ضخامت‌های مختلف هستند رسید.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical Simulation of the Axial Load Effects on Lateral Deformation of Concrete Filled Double Skin Steel Tubular under Blast Loading

نویسندگان [English]

  • Ramezan Ali Izadifard
  • Roza Rahbari
Imam Khomeini International University
چکیده [English]

According the increasing use of concrete filled double-skin steel tubular (CFDST), this study investigate the effect of axial compressive force on the lateral deformation caused via blast wave by using numerical simulation by AUTODYN software. For this purpose, CFDST with square section and different levels of axial load (p/pu from 0 to 80%) were modeled and subjected to 35 Kg TNT explosion loading. The current research shows that the residual and maximum displacements as well as columns’ damage index caused by blast load are decreased with increasing axial compressive load for lower values of axial force, but by exceeding the axial force over 0.6 of ultimate capacity, the aforementioned parameters are increased. Compared when using plates of different thickness, the minimum deformation and damage could be achieved by applying steel sheets of the same thickness for external and internal cover.

 

کلیدواژه‌ها [English]

  • Concrete Filled Double Skin Steel Tubular
  • Axial Force
  • Blast Loading
  • Deformation
[1] Deng, Y.; Tuan, C. Y.; Xiao, Y. “Flexural Behavior of Concrete-Filled Circular Steel Tubes under High-Strain Rate Impact Loading”; J. Struct. Eng. 2011, 138, 449-456.
[2] Yousuf, M.; Uy, B.; Tao, Z., Remennikov, A.; Liew, J. Y. R. “Transverse Impact Resistance of Hollow and Concrete Filled Stainless Steel Columns”; J. Constr. Steel Res. 2013, 82, 177-189.
[3] Elchalakani, M.; Zhao, X. L.; Grzebieta, R. “Concrete-Filled Circular Steel Tubes Subjected to Pure Bending”; J. Constr. Steel Res. 2001, 57, 1141-1168.
[4] Prichard, S. J.; Perry, S. H. “The Impact Behavior of Sleeved Concrete Cylinders”; Struct. Eng. 2000, 78, 23-27.
[5] Han, L. H.; Hou, C. C.; Zhao, X. L.; Rasmussen, K. “Behavior of High-Strength Concrete Filled Steel Tubes Under Transverse Impact Loading”; J. Constr. Steel Res. 2014, 92, 25-39.
[6] Ren, Q. X.; Han, L. H.; Lam, D.; Li, W. “Tests on Elliptical Concrete Filled Steel Tubular (CFST) Beams and Columns”; J. Constr. Steel Res. 2014, 99, 149-160.
[7] Alam, M. I.; Fawzia, S.; Zhao, X. L.; Remennikov, A. M. “Experimental Study on FRP-Strengthened Steel Tubular Members under Lateral Impact”; J. Compos. Constr. 2017, 21, 04017022.
[8] Zhang, F. “Numerical Simulation of Concrete Filled Steel Tube Columns against Blast Loads”; Thin Wall Struct. 2015, 92, 82-92.
[9] Wang, R.; Han, L. H.; Hou, C. C. “Behavior of Concrete Filled Steel Tubular (CFST) Members under Lateral Impact: Experiment and FEA Model”; J. Constr. Steel Res. 2013, 80, 188-201.
[10] Eisa, A. S. “Finite Element Analysis of Reinforced Concrete Columns under Different Range of Blast Loads”; Int. J. Civ. Struct. Eng. Res. 2014, 5, 155-164.
[11] Malachowski, J.; Mazurkiewicz, L.; Klasztorny, M.; Koodziejczyk, D.; Damaziak, K.; Baranowski, P. “Load Carrying Capacity Numerical Study of I-Beam Pillar Structure with Blast Protective Panel”;  B. Pol. Acad. Sci-Tech. 2013, 61, 451-457.
[12] Izadifard, R.; Hajikarimian, H. “The Effect of the Explosion during Fire on Steel Column Using Dynamic Explicit Method”; Adv. Def. Sci. & Technol. 2018, 9, 141-150 (In Persian).
[13] Wu, K. C.; Li, B.; Tsai, K. C. “The Effects of Explosive Mass Ratio on Residual Compressive Capacity of Contact Blast Damaged Composite Columns”; J. Constr. Steel Res. 2011,67, 602–612
 [14] Zhang, F.; Wu, C.; Zhao, X. L.; Xiang, H.; Li, Z. X.; Fang, Q.; Liu, Z.; Zhang, Y.; Heidarpour, A.; Pacher, J. A. “Experimental Study of CFDST Columns Infilled with UHPC Under Close-Range Blast Loading”; Int. J. Impact Eng. 2016, 93, 184-195.
[15] Century Dynamics, “AUTODYN Training Course Manual, Release 11.0”; Century Dynamics, Concord: California, 2007.
[16] Code, A. C. I. “Building Code Requirements for Structural Concrete and Commentary”; American Concrete Institute: Mechigan, 2011.
[17] Simitses, G. J.; Hodges, D. M. “Fundamentals of Structural Stability”; Butterworth-Heinemann, 2006.
[18] Williams, M. S.; Sexsmith, R. G. “Seismic Damage Indices for Concrete Structures: A State-of-the-Art Review”; Earthq. Spectra 1995, 11, 319-349.