کنترل ساختار باند بلورهای فوتونیکی یک‌بعدی با استفاده از ویژگی غیرخطی لایه‌ها

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه ارومیه

چکیده

در این مقاله ساختار باند یک بلور فوتونیکی یک‌بعدی متشکل از دی­الکتریک­های دولایه (لایه اول خلأ و لایه دوم از جنسZnSe  است) با استفاده از روش ماتریس انتقال محاسبه شد. سپس، ساختار باند بلور فوتونیکی با در نظر گرفتن ویژگی غیرخطی لایه­ها و شدت بالای میدان تابشی برای مقادیر مختلف  محاسبه گردید. تغییرات ضرایب شکست  هر یک از لایه­ها در ضرایب گذردهی الکتریکی آن­ها اعمال شد. چون ضرایب عبور و بازتاب بلور به ضرایب گذردهی الکتریکی لایه­ها بستگی دارند، با تغییر ضرایب گذردهی الکتریکی لایه­ها، ساختار با­ند بلور هم تغییر کرد. نتایج نشان دادند که با افزایش شدت نورتابشی، پهنای فرکانسی شاخه­های گاف باند کاهش یافته و در هر دو قطبش TE و TM اندکی به سمت فرکانس­های پایین­تر شیفت یافتند. نتایج همچنین نشان دادند که شاخه­های گاف باند جدید در فرکانس­های بالاتر ظاهر می­شود. این امر نشان می­دهد که ساختار باند بلور به وسیله شدت میدان تابشی قابل‌کنترل است. به‌منظور نشان دادن عملی این توانایی برای اپتیک غیرخطی، ساختار باند بلور اشاره‌شده در دو حالت خطی و غیرخطی به‌صورت تابعی از شدت میدان تابشی محاسبه و مقایسه  شدند. چنین ساختارهایی می­توانند به‌عنوان پوشش­های ضد بازتاب استفاده ­شوند که بازتاب از سطح را کاهش می­دهند. درواقع، با پوششی از بلور فوتونیکی با کاف باند قابل‌کنترل توسط یک لایه غیرخطی اپتیکی بر روی ادوات جنگی، می­توان آن­ها را از دید رادار دشمن پنهان کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Controlling Band Gap of One Dimensional Photonic Crystals via the Nonlinear Characteristic of Layers

نویسندگان [English]

  • A. Jafari Dolama
  • A. Rahmatnezamabad
چکیده [English]

In this paper, band structure of one-dimensional photonic crystal consisting of two-layer dielectrics is calculated (The first layer is the vacuum and the second layer is ZnSe). Then, the photonic crystal band structure by- nonlinear characteristics of layers and different intensity radiation values -is calculated. The refractive index modification is applied for each layer and its effect on the electrical permittivity coefficients is calculated. Since the transmission and reflection coefficients of photonic crystal depends on the layer electrical permittivity, the band structure of crystal changes as the layer electrical permittivity change. The results show that by increasing the light radiation intensity, the frequency of the band gap branches decreases, therefore in TE and TM polarizations band gap branches shift slightly to lower frequencies. In addition it is shown that new band gap branches appeared at higher frequencies which indicates that crystal band structure can be controlled by the intensity of the radiation field. In order to demonstrate the practical ability of nonlinear optics, the band structure of photonic crystal is calculated in both regimes (linear and nonlinear optics) and compared with each other. These structures can be used as anti-reflective coatings that reduce reflections from the surface. In fact, by covering war devices with band gap controllable nonlinear optical photonic crystals, they can be hidden from the enemy's radar view.

کلیدواژه‌ها [English]

  • photonic crystals
  • band structure
  • transfer matrix method
  • nonlinear optics
[1]     Kim, J. E.; Park, H. Y.; Kim, K.; Choi,Y. K.; Ha, Y. K. “Antireflection Film in One-Dimensional Metallo-Dielectric Photonic Crystals”; Opt. Commun. 2004, 230, 239-243##               
[2]     Nielsen, K. H.; Orzol, D. K.; Koynov, S.; Carney, S.; Hultstein, E.; Wondraczek, L. “Large Area, Low Cost Anti-Reflective Coating for Solar Glasses”;  Sol. Energ. Mat. & Sol. C. 2014, 128, 283-288.##
[3]     Knight, J. C.; Birks, T. A.; Russell, P. S. J.; Atkin, D. M. “All-Silica Single-Mode Fiber with Photonic Crystal Cladding”; Opt. Lett. 1996, 21, 1547-1549.##
[4]     Blanco, A.; Chomski, E.; Grabtchak, S.; Ibisate, M.; John, S.; Leonard, S. W.; Lopez, C.; Meseguer, F.; Iguez, H.; Mondla, J. P.; Ozin, G. A.; Toader, O.; Driel, H. M. “Large-Scale Synthesis of a Silicon Photonic Crystal with a Complete Three-Dimensional Bandgap Near 1.5 Micrometres”; Nature 2000, 405, 437-440.##
[5]     Russell, P. “Photonic Crystal Fibers”; Science 2003, 299, 358-362.##
[6]     Guida, G.; De Lustrac, A.; Priou, A. “An Introduction to Photonic Band Gap (PBG) Materials”; Progress in Electromagnetics Research 2003, 41, 1-20.##
[7]     Lin, S. Y.; Chow, E.; Hietala, V.; Villeneuve, P.; Joannopoulos, J. “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal”; Science 1998, 282, 274-276.##
[8]     Qifeng, Q.; Ji, X.; Chengkuo L.; Guangya, Z.  “Applications of Photonic Crystal Nanobeam Cavities for Sensing”; Micromachines 2018, 9, 541.##
[9]     Sadegh Amiri, I.; Razalli Bin Azzuhri, S.; Arif Jalil, M.; Mohd Hairi, H.; Ali, J.; Bunruangses, J.; Yupapin, P. “Introduction to Photonics: Principles and the Most Recent Applications of Microstructures”; Micromachines 2018, 9, 452.##
[10]  Yablonovitch, E. “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”; Phys. Rev. Lett. 1987, 58, 2059-2062.##
[11]  John, S. “Strong Localization of Photons in Certain Disordered Dielectric Superlattices”; Phys. Rev. Lett. 1987, 58, 2486-2489.##
[12]  Fink,Y.; Winn, J. N.; Fan, S.; Chen, C.; Michel, J.; Joannopoulos, J. D.; Thomas, E. L. “A Dielectric Omnidirectional Reflector”; Science 1998, 282, 1679-1682.##
[13]  Winn, J. N.; Fink, Y.; Fan, S.; Joannopoulos, J. D. “Omnidirectional Reflection from a One-Dimensional Photonic Crystal”; Opt. Lett. 1998, 23, 1573-1575.##
[14]  Nemec, H.; Duvillaret, L.; Garet, F.; Kuzel, P.; Xavier, P.; Richard, J.; Rauly, D. “Thermally Tunable Filter for Terahertz Range Based on a One-Dimensional Photonic Crystal With A Defect”; J. Appl. Phys. 2004, 96, 4072-4075.##
[15]  Lee, H. Y.; Cho, S. J.; Nam, G. Y.; Lee, W. H.; Baba, T.; Makino, H.; Cho, M. W.; Yao, T. “Multiple-Wavelength-Transmission Filters Based on Si-SiO2 One-Dimensional Photonic Crystals”; J. Appl. Phys. 2005, 97, 103111.##
[16]  Zamani , M.; Khazaei, S. “Design of Multi-Layere Pigment Structures for Optical Camouflage Coating”; Adv. Defence Sci.& Technol. 2018, 02, 87-96.##
[17]  Taniyama, H. “Waveguide Structures Using One-Dimensional Photonic Crystal”; J. Appl. Phys. 2002, 91, 3511-3515.##
[18]  Lu, T. W.; Chiu, L. H.; Lin, P. T.; Lee, P. T. “One-Dimensional Photonic Crystal Nanobeam Lasers on a Flexible Substrate”; Appl. Phys. Lett. 2011, 99, 071101-1-071101-3.##
[19]  Yang, Y. L.; Hou, F. J.; Wu, S. C.; Huang, W. H.; Lai, M. C.; Huang, Y. T. “Channel Drop Filters in Three Dimensional Woodpile Photonic Crystals”;  Appl. Phys. Lett. 2009, 94, 041122.##
[20]  Lin, S.Y.; Hietala, V. M.; Wang, L.; Jones, E. D. “Highly Dispersive Photonic Band-Gap Prism”; Opt.  Lett. 1996, 21, 1771-1773.##
[21]  Lin, S.Y.; Fleming, J. G.; Hetherington, D. L.; Smith, B. K.; Biswas, R.; Ho, K. M. “A Three-Dimensional Photonic Crystal Operating at Infrared Wavelengths”; Nature 1998, 394, 251-253.##
[22]  Lin, S. Y.; Chow, E.; Hietala, V.; Villeneuve, P. R.; Joannopoulos, J. D. “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal”; Science 1998, 282, 274-276.##
[23]  Coulombe, F. R. “Fiber Optic Sensors-Catching Up with the 1980's”; Sensors 1984, 1, 5-11.##
[24]  Giallorenzi, T. G.; Bucaro, J. A.; Dandridge, A.; Siegel Jr., G. H.; Cole, J. H.; Rashleigh, S. C.; Priest, R. G.  “Optical Fiber Sensor Technology”; IEEE J. Quant. Elect. 1982, 18, 626-665.##
[25]  Sukhoivanov, I. A.; Guryev, I. V. “Photonic Crystals: Physics and Practical Modeling”; Springer: Heidelberg, 2009.##
[26]  Yariv, A.; Yeh, P. “Optical Waves in Crystals”; John Wiley & Sons: New York, 1984.##
[27]  Li, Z. Y.; Lin, L. L. “Photonic Band Structures Solved by a Plane-Wave-Based Transfer-Matrix Method”; Phys. Rev. E. 2003, 67, 046607.##
[28]  Depine, R. A.; Ricci, M. L. M.; Monsoriu, J. A.; Silvestre, E.; Andres, P. “Zero Permeability and Zero Permittivity Band Gaps in 1D Metamaterial Photonic Crystals”; Phys. Lett. A. 2007, 364, 352-355.##
[29]  Wang, L. G.; Chen, H.; Zhu, S. Y. “Omnidirectional Gap and Defect Mode of One-Dimensional Photonic Crystals with Single-Negative Materials”; Phys. Rev. B. 2004, 70, 245102-245106.##
[30]  Boyd, R. W. “Nonlinear Optics”; Academic Press: San Diego, 2003.##
[31]  Wang , Z.; Liu, D. “A Few Points on Omnidirectional Band Gaps in One- Dimensional Photonic Crystals”; Appl. Phys. B. 2007, 86, 473 -476.##
[32]  Yeh, P.; Yariv, A.; Hong, C. S. “Electromagnetic Propagation in Periodic Stratified Media. I. General Theory”; J. Am. Opt. Soc. 1977, 67, 423-436.##
[33]  Yeh, P. “Optical Waves in Layered Media”; John Wiley & Sons: New York, 1998.##
 [34]  Pendry, J. B.; Mackinnon, A. “Calculation of Photon Dispersion Relations”; Phys. Rev. Lett. 1992, 69, 2772-2775.##
[35]  Liu, N. H.; Zhu, S. Y.; Chen, H.; Wu, X. “Superluminal Pulse Propagation Through One-Dimensional Photonic Crystals with a Dispersive Defect”; Phys. Rev. E. 2002, 65, 046607 -046617.##
[36]  Gang, W. L.; Hua, L. N.; Qiang, L.; Yao, Z. S. “Negative Hartman Effect in One-Dimensional Photonic Crystals with Negative Refractive Materials”; Phys. Rev. E. 2004, 70, 016601.##
[37]  Veselago, V. G. “Someremarks Regarding Electrodynamics of Materials with Negative Refraction”;  Appl. Phys. B. 2005, 81, 403-407.##
[38]  Qi, L.; Yang, Z.; Lan, F.; Gao, X.; Shi, Z. “Properties of Obliquely Incident Electromagnetic Wave in One-Dimensional Plasma Photonic Crystal”; Phys. Plasmas. 2010, 17, 042501-1-8.##
[39]  Born, M.; Wolf, E. “Principles of Optics”; Cambridge University Press: Cambridge, 1999.##