شبیه‌سازی رفتار قفل‌شدگی مد عدسی کر در نوسانگر لیزر تیتانیوم سفایر با کاواک متقارن یا غیرمتقارن

نویسندگان

سپاه

چکیده

لیزرهای فمتوثانیه از پرکاربردترین لیزرهای فوق کوتاه می‌باشند. انهدام هدایتگر اپتیکی – لیزری، تولید امواج ترا هرتز پرتوان با واگرایی کم و آشکارسازی آن برای تشخیص آلودگی و یا وجود مواد ممنوعه در یک محیط یا همراه یک شخص،‌ طیف‌سنجی فروشکست القایی برای تست محیط از دور بدون حضور فیزیکی در آن، دوربین فمتوثانیه به منظور از کاربردهای لیزرهای فمتوثانیه می‌باشند. نوسانگر فمتوثانیه اولین گام برای تولید پالس‌های فمتوثانیه پر توان می باشد. در این مقاله ابتدا با شبیه سازی انتشار باریکه لیزر در نوسانگر خطی تیتانیوم سفایر با کاواک آینه انحنادار در ساختار متقارن و نامتقارن به روش ردیابی پرتو برای یک باریکه گاوسی بدون در نظر گرفتن اثر عدسی کر در محیط بهره، نقاط پایدار عملکرد لیزر را به دست می‌آوریم، سپس رفتار قفل‌شدگی مدی عدسی کر در آن نوسانگر شبیه‌سازی شده و با ردیابی پرتو توسط ماتریس ABCD، موقعیتی که آستیگماتیسم باریکه را خنثی می‌کند، به دست می‌آوریم. در این شبیه‌سازی از روش تقسیم گام‌به‌گام برای پیدا کردن تغییرات شدت باریکه درون کریستال و از روش تیراندازی برای محاسبه اندازه قطر لکه بر روی آیینه اول کاواک استفاده می‌شود. با انجام شبیه‌سازی بدون در نظر گرفتن اثر عدسی کر تأثیر طول کاواک لیزر بر روی مشخصات پرتوی درون کاواک نشان داده می‌شود، در ادامه با استفاده از نواحی عملکرد پایدار لیزر که در این حالت به‌دست‌آمده‌ و با در نظر گرفتن عدسی کر، تأثیر مکان محیط بهره بر روی انتشار پرتو شبیه‌سازی‌شده است. در انتها نیز با توجه به نتایج شبیه‌سازی شرایط مختلف جهت دستیابی به قفل‌شدگی مدی در حالت‌های روزنه سخت و نرم بررسی می‌گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Kerr Lens Behavior in a Ti:Sapphire Oscillator with Symmetric and Asymmetric Resenator

نویسندگان [English]

  • Abdollah Malakzadeh
  • Seyed Reza Zare Kalate
  • Mohammad Javad Kamjoo
چکیده [English]

Femtosecond pulse lasers are one of the most widely used lasers. Femtosecond oscillator is first step to generate powerful femtosecond pulses. In this work, the laser beam propagation in an oscillator in symmetric and asymmetric designs without Kerr lens effect inside a Ti:Sa medium was simulated and the cavity stable operation conditions have been obtained. Then, Kerr lens modelocking behavior is simulated and  the situation compensating the beam astigmatism is achieved. Split-step method has been used to obtain the beam intensity change in the Ti:Sa rod and shooting method has been utilized to calculate the beam spot size on the first cavity mirror. Assuming no Kerr lens effect, influence of the cavity length changes in laser beam characteristics is investigated and considering the Kerr lens effect in the laser rod, influence of the rod position in the beam characteristics and beam propagation is simulated. Finally, by considering the simulations results, conditions to achieve soft or hard aperture modelocking are discussed.

کلیدواژه‌ها [English]

  • Femtosecond
  • Oscillator
  • Kerr Lens Effect
  • Astigmatism
  • Modelocking
  • Soft Aperture Modelocking
  • Hard Aperture Modelocking

[1]     Boyd, R. “Nonlinear optics”; Academic Press. 2003.##

[2]     Shen, Y. “Recent advances in nonlinear optics", Rev. of Mod. Phys”; 1976, 48(1), 1.##

[3]     Hnilo, A. A.; Kovalsky, M. G.; Agüero, M. B.; Tredicce, J. R. “Characteristics of the extreme events observed in the Kerr-lens Mode-Locked Ti: Sapphire Laser”; Phys. Rev. A, 2015, 91(1).##

[4]     Sheik-Bahae, M.; Said, A. A.; Hagan, D. J.; Soileau, M. J.; Van Stryland, E. W. “Nonlinear refraction and Optical Limiting in Thick Media”; Opt. Eng. 1991, 30(8), 1228-1235.##

[5]     Salin, F.; Squier, J.; Piché, M. “Mode locking of Ti: Al2 O3 Lasers and Self-Focusing: a Gaussian Approximation”; Opt. lett.1991, 16(21), 1674-1676.##

[6]     Brabec, T.; Spielmann, H.; Curley, P. F.; Krausz, F. “Kerr Lens Mode Locking”; Opt. lett. 1992, 17(18), 1292-1294.##

[7]     Cerullo, G. S.; Silvestri, De.; Magni, V. “Self-Starting Kerr-Lens Mode Locking of a Ti: Sapphire Laser”; Opt. lett., 1994. 19(14), 1040-1042.##

[8]     Diels, J. C.; Rudolph, W. “Ultrashort Laser Pulse Phenomena”; Academic Press, (2006).##

[9]     . Chen, S.; Wang, J. "Self-Starting Issues of Passive Self-Focusing Mode Locking”; Opt. lett. 1991, 16(21), 1689-1691.##

[10]  Curley, P.; Ferguson.; A. “Actively Mode-Locked Ti: Sapphire Laser Producing Transform-Limited Pulses of 150-fs Duration”; Opt. lett. 1991, 16(13), 1016-1018.##

[11]  Spence, D. E.; Evans, J. M.; Sleat, WE.; Sibbett, W.; Allen, J. E. “Regeneratively Initiated Self-Mode-Locked Ti: Sapphire Laser”; Opt. Lett. 1991, 16(22), 1762-1764.##

[12]  Sarukura, N.; Ishida, Y.; Nakano, H. “Generation of 50-Fsec Pulses From a Pulse-Compressed, Cw, Passively Mode-Locked Ti: Sapphire Laser”; Opt. Lett. 1991, 16(3), 153-155.##

[13]  French, P.; Williams, J.; Taylor, J. “Femtosecond Pulse Generation from a Titanium-Doped Sapphire Laser using Nonlinear External Cavity Feedback”; Opt. Lett. 1989, 14(13), 686-688.##

[14]  French, P. M. W.; Noske, D. U.; Rizvi, N. H.; Williams, J. A. R.; Taylor, J. R. “Characterisation of a Cw Titanium-Doped Sapphire Laser Mode-Locked with a Linear External Cavity”; Opt. comm. 1991, 83(1), 185-194.##

[15]  Liu, Y. M.; Sun, K. W.; Prucnal, P. R.; Lyon, S. A. “Simple Method to Start and Maintain Self-Mode-Locking of a Ti: Sapphire Laser”; Opt. lett. 1992, 17(17), 1219-1221.##

[16]  Emmerichs, U.; Bakker, H.; Kurz, H. “Generation of High-Repetition Rate Femtosecond Pulses Tunable in the Mid-infrared”; Opt. comm. 1994, 111(5), 497-501.##

[17]  Radzewicz, C.; Pearson, G. W.; Krasinski, J. S. “Use of ZnS as an Additional Highly Nonlinear Intracavity Self-Focusing Element in a Ti: Sapphire Self-Modelocked Laser”; Opt. comm. 1993, 102(5), 464-468.##

 

[18]  Liu, Y. M.; Sun, K. W.; Prucnal, P. R.; Lyon, S. A. “Simple Method to Start and Maintain Self-Mode-Locking of a Ti: Sapphire Laser”; Opt. lett. 1992, 17(17), 1219-1221.##

[19]  Emmerichs, U.; Bakker, H.; Kurz, H. “Generation of High-Repetition Rate Femtosecond Pulses Tunable in the Mid-infrared”; Opt. comm. 1994, 111(5), 497-501.##

[20]  Radzewicz, C.; Pearson, G. W.; Krasinski, J. S. “Use of ZnS as an Additional Highly Nonlinear Intracavity Self-Focusing Element in a Ti: Sapphire Self-Modelocked Laser”; Opt. comm. 1993, 102(5), 464-468.##

[21]  Spence, D. E.; Kean, P. N.; Sibbett, W. “60-fsec Pulse Generation from a Self-Mode-Locked Ti: Sapphire Laser”; Opt. lett. 1991, 16(1), 42-44.##

[22]  Asaki, M. T.; Huang, C.; Jianping, D. G.; Kapteyn, Z. H.; et al. “Generation of 11-fs Pulses from a Self-Mode-Locked Ti: Sapphire Laser”; Opt. lett. 1993, 18(12), 977-979.##

[23]  Kafka, J. D. Watts, M. L.; Pieterse, J. W. “Picosecond and Femtosecond Pulse Generation in a Regeneratively Mode-Locked Ti: Sapphire Laser”; IEEE Journal of Quantum Electronics. 1992, 28(10), 2151-2162.##

[24]  Liu, K. X.; Flood, C. J.; Walker, D. R.; Van Driel, H. M. “Kerr Lens Mode Locking of a Diode-Pumped Nd: YAG Laser”; Opt. Lett. 1992, 17(19), 1361-1363.##

[25]  Lee, Y. W.; Yi, J. H.; Cha, Y. H.; Yoo, B. D, “Numerical Analysis of Soft-Aperture Kerr-Lens Mode Locking in Ti: Sapphire Laser Cavities by Using Nonlinear ABCD Matrices”; Journal of the Korean Physical Society. 2005, 46(5), 1131-1136.##

[26]  Rashidian Vaziri, M. R. “Z-Scan Theory for Nonlocal Nonlinear Media with Simultaneous Nonlinear Refraction and Nonlinear Absorption”; Appl. opt. 2013, 52(20), 4843-4848.##

[27]  Kogelnik, H.; Dienes, A.; Shank, C. “Astigmatically Compensated Cavities for CW Dye Lasers”; Journal of Quantum Electronics.1972, 8(3), 373-379.##

[28]  Vaziri, M. R.; Hajiesmaeilbaigi F.; Maleki, M. “New Ducting Model for Analyzing the Gaussian Beam Propagation in Nonlinear Kerr Media and its Application to Spatial Self-Phase Modulations”; Journal of Optics. 2013, 15(3).##

[29]  Saleh, B.; Teich M.; Slusher, R. E. “Fundamentals of Photonics”; Physics Today. 2008, 45(11), 87-88.##

[30]  Milonni, P.; Eberly, J.; Wiley, J.; Sons. Lasers. New York, 1988.##

[31]  Svelto, O.; Hanna, D. C. “Principles of Lasers”; Springe. ( 1976).##

[32]  Meier, B.; Penzkofer, A. “Determination of Nonlinear Refractive Indices by External Self-Focusing”; Appl. Phys. 1989, 49(6), 513-519

Siders, C. W.; Gaul, E. W.; Downer, M. C. “Self‐Starting Femtosecond Pulse Generation from a Ti: Sapphire Laser Synchronously Pumped by a Pointing‐Stabilized Mode‐Locked Nd: YAG Laser”; Rev. Sci. Instrum. 1994, 65(10), 3140-3144.##