[1] Zhang, C.; Jia, D.; Wang, L.; Wang, W.; Liu, F.; Yang, A. “Comparative Research on Network Intrusion Detection Methods Based on Machine Learning”; Comput. Secur. 2022, 121, 102861. doi: https://doi.org/10.1016/j.cose.2022.102861.
[2] Dina, A. S.; Manivannan, D. “Intrusion Detection Based on Machine Learning Techniques in Computer Networks”; Internet. Things. 2021, 16, 100462. doi: https://doi.org/10.1016/ j.iot.2021.100462.
[3] Lansky, J.; Ali, S.; Mohammadi, M.; Majeed, M. K.; Karim, S. H. T.; Rashidi, S. “Deep Learning-Based Intrusion Detection Systems: A Systematic Review”, IEEE. Access. 2021, 9, 101574-101599. doi:DOI: 10.1109/ACCESS.2021. 3097247.
[4] Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. “Network Intrusion Detection System: A Systematic Study of Machine Learning aAnd Deep Learning Approaches”; T. Emerg. Telecommun. T. 2021, 32, e4150. doi: https://doi.org/10.1002/ett.4150.
[5] Chou, D.; Jiang, M. “A Survey on Data-Driven Network Intrusion Detection”; Acm. Comput. Surv. 2021, 54, 1-36. doi: https://doi.org/10.1145/3472753.
[6] Heidari, A.; Jamali, M.A. “Internet of Things Intrusion Detection Systems: a comprehensive review and future directions”; CLUSTER. COMPUT. 2023, 26, 3753-3780. https://link.springer.com/article/doi: 10.1007/s10586-022-03776-z.
[7] Huong, P.; Hung, D.V. “Intrusion Detection in IoT Systems Based on Deep Learning Using Convolutional Neural Network”; 6th NAFOSTED Conference on Information and Computer Science (NICS), 2019, 448-453. doi: DOI: 10.1109/NICS48868.2019.9023871.
[8] Baich, M.; Hamim, T.; Sael, N.; Chemlal, Y. “Machine Learning For IoT Based Networks Intrusion Detection: A Comparative Study”; PROCEDIA. COMPUT. SCI. 2022, 215, 742-751. doi: https://doi.org/10.1016/j.procs.2022.12.076.
[9] Gurung, S.; Ghose, M. K.; Subedi, A. “Deep Learning Approach on Network Intrusion Detection System Using NSL-KDD Dataset”; Int. J. Comput. Net. Inf. Sec. 2019, 11, 8-14. doiDOI: 10.1109/TETCI.2017.2772792.
[10] Tsogbaatar, E.; Bhuyan, M. H.; Taenaka, Y.; Fall, D.; Gonchigsumlaa, K.; Elmroth, E.; Kadobayashi, Y. “DeL-IoT: A Deep Ensemble Learning Approach to Uncover Anomalies in IoT”; Internet. Things. 2021, 14, 100391. doi: https://doi.org/10.1016/j.iot.2021.100391.
[11] Ullah, I.; Mahmoud, Q. H. “Design aAnd Development of aA Deep Learning-Based Model fFor Anomaly Detection in IoT Networks”; 2021, IEEE. Access, 2021, 9, 103906-103926. doiDOI: 10.1109/ACCESS.2021.3094024.
[12] Roopak, M.; Tian, G.Y.; Chambers, J. “An Intrusion Detection System Against DDoS Attacks in IoT Networks”; 10th Annual Computing aAnd Communication Workshop aAnd Conference (CCWC), 2020, 3, 0562-0567. doi: 10.1109/CCWC47524.2020.9031206.
[13] Saheed, Y. K.; Abiodun, A. I.; Misra, S.; Holone, M. K.; Colomo-Palacios, R. “A Machine Learning-Based Intrusion Detection fFor Detecting Internet of Things Network Attacks”; Alex. Eng. J. 2020, 61, 9395-9409. doi: https://doi.org/10.1016/j.aej.2022.02.063.
[14] Bhatt, P.; Morais, A. “HADS: Hybrid Anomaly Detection System fFor IoT Environments”; International Conference oOn Internet oOf Things, Embedded Systems aAnd Communications (IINTEC), 2018, 3, 191-196. doi:DOI: 10.1109/IINTEC.2018.8695303.
[15] Shafiq, M.; Tian, Z.; Bashir, A. K.; Du, X.; Guizani, M. “CorrAUC: A Malicious BoT-IoT Traffic Detection Method in IoT Network Using Machine Learning Techniques”; IEEE Internet Things J. 2020, 8, pp. 3242-3254. doi: DOI: 10.1109/JIOT.2020.3002255.
[16] Sarwar, A.; Hasan, S.; Khan, W. U.; Ahmed, S.; Marwat, S.N.K. “Design of aAn Advance Intrusion Detection System For IoT Networks”; 2nd International Conference on Artificial Intelligence (ICAI), 2022, 3, 46-51. doi:DOI: 10.1109/ICAI55435.2022.9773747.
[17] Bagaa, M.; Taleb, T.; Bernabe, J. B.; Skarmeta, A. “A Machine Learning Security Framework For IoT Systems”; IEEE. Access. 2020, 8, 114066-114077. doi: 10.1109/ACCESS.2020.2996214.
[18] Kasongo, S. M. “An Advanced Intrusion Detection System For IIoT Based on GA and Tree-Based Algorithms”; IEEE. Access. 2021, 9, 113199-113212. doi:DOI: 10.1109/ACCESS.2021.3104113.
[19] Soe, Y. N.; Santosa, P. I.; Hartanto, R. “DDoS Attack Detection Based on Simple ANN wWith SMOTE fFor IoT Environment”; Fourth International Conference oOn Informatics aAnd Computing (ICIC), 2019, 1-5. doi: DOI: 10.1109/ICIC47613.2019.8985853.
[20] Raza, A.; Rustam, F.; Siddiqui, H. U. R.; Diez, I. Dd. l. T.; Garcia-Zapirain, B.; Lee, E.; Ashraf, I. “Predicting Genetic Disorder aAnd Types of Disorder Using Chain Classifier Approach”; Genes. 2023, 14, 71. https://www.mdpi.com/2073-4425/14/1/71.
[21] Meraihi, Y.; Ramdane-Cherif, A.; Acheli, D.; Mahseur, M. “Dragonfly Algorithm: A Comprehensive Review aAnd Applications”; Neural Comput. Appl. 2020, 32, 16625-16646. doi: https://doi.org/10.1007/s00521-020-04866-y.
[22] Meena, G.; Choudhary, R. R. “A Review Paper On IDS Classification Using KDD99 and NSL-KDD Datasset in WEKA”; International Conference on Computer, Communications and Electronics (Comptelix) , 2017, 553-558. doi:DOI: 10.1109/COMPTELIX.2017.8004032.
[23] Meftah, S.; Rachidi, T.; Assem, N. “Network Based Intrusion Detection Using the UNSW-NB15 Dataset”; IntNT. J. Comput. Digital. Sys. 2019, 478-487. DOI:doi: 10.1109/ICAEEE54957. 2022.9836404.