[5] Tissandier, F.; Jurkovičová, L.; Gautier, J.; Staněk, M.; Finke, O.; Albrecht, M.; Nejdl, J.; Hort, O.; Sebban, S. “Demonstration of a kHz-Repetition-Rate Extreme Ultraviolet Laser at 41.8 nm”; Opt. Lett. 2024, 49, 6321–6324. doi:10,1364/OL,38340.
[6] Huang, L. G.; Takabe, H; Cowan, T. E.; “Maximizing Magnetic Field Generation in High Power Laser–Solid Interactions”; High Power Laser Sci. Eng. 2019, 7. doi: 10.1017/hpl.2019.9.
[7] Campbell, E. M.; Sangster, T. C.; Goncharov, V. N.; Zuegel, J. D.; Morse, S. F. B.; Sorce, C.; Collins, G. W.; Wei, M. S.; Betti, R.; Regan, S. P.; Froula, D. H. “Direct-Drive Laser Fusion: Status, Plans and Future”; Philos. Trans. A Math. Phys. Eng. Sci. 2021, 379, 20200011. doi:10,1098/rsta,2020.0011.
[8] Thakur, V.; Kant, N.; Vij, S. “Harmonic Generation by an Interaction of Laser With an Array of Anharmonic Carbon Nanotubes”; Chin. J. Phys. 2021, 71, 660–668. doi:10.1016/ j.cjph.2021.04.002.
[9] Mourou, G. A.; Tajima, T.; Bulanov, S. V. “Optics in the Relativistic Regime”; Rev. Mod. Phys. 2006, 78, 309–371. doi:10.1103/RevModPhys.78.309.
[10] Zare, S.; Yazdani, E.; Rezaee, S.; Anvari, A; Sadighi-Bonabi, R. “Relativistic Self-Focusing of Intense Laser Beam in Thermal Collisionless Quantum Plasma With Ramped Density Profile”; Phys. Rev. Spec. Top. Accel. Beams 2015, 18. doi:10.1103/PhysRevSTAB.18.041301.
[11] Javan, N. S.; Azad, M. H. “Thermal Behavior Change in the Self-Focusing of an Intense Laser Beam in Magnetized Electron-Ion-Positron Plasma”; Laser Part. Beams 2014, 32, 321–330. doi:10.1017/S0263034614000184.
[12] Gill, T. S.; Kaur, R.; Mahajan, R. “Self-Focusing of Super-Gaussian Laser Beam Inmagnetized Plasma Under Relativistic and Ponderomotive Regime”; Optik 2015, 126, 1683–1690, doi: 10.1016/j.ijleo.2015.05.031.
[13] Shukla, P. K.; Eliasson, B. “Nonlinear Aspects of Quantum Plasma Physics”; Phys.--Usp. 2010, 53, 51–76. doi:10.3367/ UFNe.0180.201001b.0055.
[14] Aggarwal, M.; Kumar, H.; Mahajan, R.; Arora, N. S.; Gill, T. S. “Relativistic Ponderomotive Self-Focusing of Quadruple Gaussian Laser Beam in Cold Quantum Plasma”; Laser Part. Beams. 2018, 36, 353–358. doi:10.1017/S026303461800023X.
[15] Zare, S.; Rezaee, S.; Yazdani, E.; Anvari, A.; Sadighi-Bonabi, R. “Relativistic Gaussian Laser Beam Self-Focusing in Collisional Quantum Plasmas”, Laser Part. Beams 2015, 33, 397–403. doi:10.1017/S0263034615000063.
[16] Yaalou, M.; Hricha, Z.; Belafhal, A. “Transformation of a vortex cosine-hyperbolic-Gaussian beam by an airy transform optical system”; Optical and Quantum Electronics 2023, 55, 875. doi:10.1007/s11082-023-05133-9.
[17] Kant, N.; Vij, S.; Chakravarti, S. K.; Kushwaha, J. P.; Thakur, V. “Relativistic Self-Focusing of Hermite-Cosh-Gaussian Laser Beam in Magnetoplasma With Exponential Plasma Density Ramp”, Commun. Theor. Phys. 2019, 71, 1469. doi:10.1088/ 0253-6102/71/12/1469.
[18] Nanda, V.; Ghotra, H. S.; Kant, N. “Early and Strong Relativistic Self-Focusing of Cosh-Gaussian Laser Beam in Cold Quantum Plasma”, Optik 2018, 156, 191–196. doi: 10.1016/j.ijleo.2017.10.147.
[19] Patil, S. D.; Takale, M. V.; Navare, S. T.; Dongare, M. B.; Fulari, V. J. “Self-Focusing of Gaussian Laser Beam in Relativistic Cold Quantum Plasma”; Optik 2013, 124, 180–183. doi:10.1016/J.IJLEO.2011.11.061.
[20] Wani, M. A.; Ghotra, H. S.; Kant, N. “Self-Focusing of Hermite-Cosh-Gaussian Laser Beam in Semiconductor Quantum Plasma”; Optik. 2018, 154, 497–502. doi:10.1016/ j.ijleo.2017.10.058.
[21] Thakur, V.; Kumar, S.; Kant, N. “Self-Focusing of a Bessel–Gaussian Laser Beam in Plasma Under Density Transition”; J. Nonlinear Opt. Phys. Mater. 2024, 33. doi:10.1142/ S0218863523500388.