ارزیابی پاسخ تیرهای بتن مسلح تحت اثر بارهای انفجاری و تعیین محدوده پاسخ‌های متأثر از ایمپالس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 کارشناسی ارشد، دانشگاه صنعتی مالک اشتر،تهران، ایران

چکیده

در تعیین پاسخ سازه­ها تحت بارهای دینامیکی، پاسخ  محدودة ارتعاش آزاد به علت حذف بار از معادلات، حالتی خاص محسوب می‌شود. ازآنجاکه قرارگیری پاسخ بیشینة سازه­ها در محدودة ارتعاش آزاد، معمولاً تحت اثر بارهای ضربه‌ای مثل بار انفجار رخ می‌دهد، دانستن این مسئله که بار انفجار و خود سازه باید دارای چه ویژگی‌هایی باشند تا پاسخ سازه در محدوده ارتعاش آزاد قرار گیرد، مسئله‌ای مهم در تحلیل سازه‌ها در برابر بارهای دینامیکی محسوب می‌شود. به همین منظور در این تحقیق، تیرهای بتن مسلح با استفاده از معادلات حرکت حاکم بر سیستم­های یک درجه آزادی، مورد بررسی قرار گرفتند. پس از حل معادلات حرکت در حالت ارتعاش آزاد و استخراج روابط خیز، از صحت این روابط با استفاده از تحقیقات آزمایشگاهی معتبر، مدل اجزا محدود و دستورالعمل UFC 3-340-02، اطمینان حاصل شد. در ادامه، روابط و نمودارهایی جهت تعیین محدوده­ پاسخ­های متأثر از ایمپالس ارائه گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the Response of RC Beams Under the Effect of Explosive Loads and Determination of the Range of Responses Affected by Impulse

نویسندگان [English]

  • seied ahmad hosseini 1
  • Mohammad hasan Najafialmooti 2
1 Assistant Professor malek ashtar University of Technology, Tehran, Iran
2 Master's degree, ، Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

In determining the response of structures under dynamic loads, the response of the free vibration range is considered a special case due to removing the load from the equations. Since the maximum response of structures in the range of free vibration usually occurs under the effect of shock loads such as blast load, knowing what characteristics the blast load and the structure itself must have so that the response of the structure is in the range of free vibration. , is considered an important issue in the analysis of structures against dynamic loads. For this purpose, in this research, reinforced concrete beams were investigated using the equations of motion governing single-degree-of-freedom systems. After solving the equations of motion in the free vibration state and extracting the yield relations, the correctness of these relations was ensured by using valid laboratory research, finite element model and UFC 3-340-02 guidelines. In the following, relations and diagrams were presented to determine the range of responses affected by impulse.

کلیدواژه‌ها [English]

  • Free Vibration
  • Blast Loading
  • Reinforced Concrete Beams
  • SDOF System
  • Impulse Effect Range

Smiley face

 

1.        “Fundamentals of Protective Design (Non-Nuclear) TM 5-855-1”; Washington, DC: Department of the Army. 1965. (Reprint of Former Document 1110-345 405, 1946).
2.      Biggs, J. M. “Introduction to Structural Dynamics”; New York: Mcgraw-Hill Book Company. 1964.
3.      Seiler, J. A.; Cotter, B. A.; Symonds, P. S.; Providence, R. I. “Impulsive Loading of Elastic Plastic Beams”; J. Appl. Mech. 1956, 23, 515-521.
4.      Brooks, N. B.; Newmark, N. M. “The Response of Simple Structures to Dynamic Loads, Technical Report to ONR Contract N6ori-071(06), Task Order VI Project NR-064-183”; Illinois: University of Illinois Urbana. 1953.
5.      Stochino, F. “RC Beams Under Blast Load: Reliability and Sensitivity Analysis”; Eng. Fail. Anal. 2016, 66, 544-565.  https://doi.org/10.1016/j.engfailanal.2016.05. 003.
6.      Park, G. K.; Kwak, H. G. “Numerical Analysis of RC Beam Subjected to Blast Load”; Int. J Struct. Civ. Eng. Res. 2016, 5(1), 26-30. https://doi.org/DOI: 10.18178/ijscer.
7.      Qu, Y.; Li, X.; Kong, X.; Zhang, W.; Wang, X. “Numerical Simulation on Dynamic Behavior of Reinforced Concrete Beam with Initial Cracks Subjected to Air Blast Loading”; Eng. Struct. 2016, 128, 96-110. https://doi.org/10.1016/j.engstruct.2016. 09.032.
8.      Yan, B.; Liu, F.; Song, D.; Jiang, Z. “Numerical Study on Damage Mechanism of RC Beams Under Close-In Blast Loading”; Eng. Fail. Anal. 2015, 51, 9-19. https://doi.org/10.1016/j.engfailanal.2015.02.007.
9.      Zhang, X. H.; Wu, Y. Y.; Wang, J. “Numerical Simulation for Failure Modes of Reinforced Concrete Beams Under Blast Loading”; Adv. Mat. Res. 2011, 163-167,1359-1363. https://doi.org/10.4028/www. scientific.net/AMR.163-167.1359.
10.  Magnusson, J.; Hallgren, M.; Ansell, A. “Air-Blast-Loaded, High-Strength Concrete Beams. Part I: Experimental Investigation”; Mag. Concrete Res. 2010, 62(2), 127-136. https://doi.org/10.1680/macr.2008.62.2. 127.
11.  Izadifard, R. A.; Gholipour, R.; Hajikarimian, H. “Investigation of Damage in Reinforced Concrete Beams Under Blast Loading (Field Test and Numerical Simulation)”; Journal of Energetic Materials. 2017, 12(1), 33-43 (In Persian).
12.  Izadifard, R. A.; Moghimi Kheirabadi, P.; Zare Shani, A. “Investigation of Residual Flexural Strength of Reinforced Concrete Beams Damaged by Blast Load”; Journal of Energetic Materials. 2014, 8(3), 3-14 (In Persian).
13.  Zhang, D.; Yao, S.; Lu, F.; Chen, X.; Lin, G.; Wang, W.; Lin, Y. “Experimental Study on Scaling of RC Beams Under Close-In Blast Loading”; Eng. Fail. Anal. 2013, 33, 497-504. https://doi.org/10.1016/ j.engfailanal.2013.06.020.
14.     Hosseini, S. A.; Najafi Alamoti, M. H. “Parametric Analysis of Reinforced Concrete Beams Under Blast Load”; Adv. Defence Sci. & Technol. 2023, 14(1), 1-10 (InPersian). https://dor.isc.ac/dor/20.1001.1.26762935. 1402.14.1.1.1
15.  Hosseini, S. A.; Foroughi, A.; Najafi Alamoti, M. H. “Obtaining the Deflection Formula of Concrete Beams under Blast Load Using the Response Surface Methodology”; Journal of Energetic Materials. 2021, 15(4), 223-232 (In Persian).
16.  Clough, R. W.; Penzien, J. “Dynamics of Structures, 3rd Edn”; Berkeley, CA, USA: Computers & Structures. 2003.
17.  “UFC 3-340-02, Structures to Resist the Effect of Accidental Explosions”; Washington, DC: US Department of the Army, Navy and the Air Force. 2014.
18.  Hosseini, S. A.; Foroughi, A.; Peymani, S. “Evaluation of Response and Hardness of Double-sided Reinforced Concrete Slab Against Blat with the Help of Genetic Algorithm and Response Surface Method”; Adv. Defence Sci. & Technol. 2022, 13(4), 239-250 (In Persian).  https://dor.isc.ac/dor/20.1001.1.26762935. 1401.13.4.4..3
19.     Hosseini, S. A.; Salimi, H.; Najafi, M. H.; “Introducing a New Relation for Calculating the Explosion Wave Decay Coefficient”; J Struct. & Const. Eng. 2022, 8(11), 310-321  (In Persian).. https://doi.org/10.22065/jsce. 2021.286856.2460.
20.     Peimani, S.; Hosseini, S. A. “SDOF System Solution of the Two-Way RC Slab Subjected to Blast Loading”; Adv. Defence Sci. & Technol. 2021, 2, 185-196 (In Persian). https://dor.isc.ac/dor/20.1001.1.26762935. 1401.13.4.4.3
21. Hosseini, S. A.; Najafi, M. H.; “Parametric Analysis of Reinforced Concrete Beams under Blast Load”; Adv. Defence Sci. & Technol. 2023, 14(1), 1-10  (In Persian).  https://dor.isc.ac/dor/20.1001.1.26762935.1402.14.1.1..1