شبیه‌سازی پخش مواد پرتوزا حاصل از یک حادثه فرضی برای راکتور ABV با استفاده از کد RASCAL

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه جامع امام حسین (ع)، تهران، ایران

2 دانشیار، دانشگاه جامع امام حسین (ع)، تهران، ایران

3 پژوهشگر، دانشگاه جامع امام حسین (ع) ، تهران ، ایران

چکیده

ارزیابی دز ناشی از گسیل مواد پرتوزا یکی از مقوله­های اصلی ایمنی رآکتورها و تأسیسات هسته­ای است. پخش مواد ­پرتوزا که ممکن است ناشی از یک حادثه در تأسیسات هسته­ای باشد، می­تواند سبب خطرات پرتویی برای انسان و محیط‌زیست شود، در چنین شرایطی بایستی میزان دز ارزیابی شود و در صورت لزوم اقدامات کنترلی مناسب لحاظ گردد. در این مقاله فرض شده است، رآکتور ABV که یک رآکتور ماژولار کوچک است، به‌منظور تأمین انرژی تأسیسات صنعتی در اطراف شهرستان مبارکه واقع در استان اصفهان نصب شده است. هدف اصلی این پژوهش، بررسی پخش جوی سزیم-134 و سزیم-137 ناشی از یک حادثه فرضی ذوب قلب در این رآکتور است. مقدار رادیوایزوتوپ­های سزیم-134 و 137 موجود در قلب رآکتور در زمان وقوع حادثه که در کارهای قبلی نویسندگان محاسبه شده است، به‌عنوان چشمه تابشی فرض می‌شود. سپس، با استفاده از نرم­افزار RASCAL و با فرض اینکه مدت‌زمان رهاسازی این دو رادیوایزوتوپ یک ساعت باشد، پخش جوی آنها در دو روز بعد از حادثه و تا شعاع 80 کیلومتری مورد بررسی قرار گرفته است. در این پژوهش کمیت­های دز مؤثر کل TEDE، دز تیروئید، CEDE استنشاقی، و همچنین آلودگی سطحی این دو ایزوتوپ محاسبه و الگوی پخش آن­ها تا فواصل 80 کیلومتری از محل وقوع حادثه ترسیم شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Radioactive Material Release Resulting from a Hypothetical Accident for ABV Reactor Using RASCAL Code

نویسندگان [English]

  • Mohammad Azadifar 1
  • Mohsen Shayesteh 2
  • Javad Karimi 3
1 Master's student, Imam Hossein University (AS), Tehran, Iran
2 Associate Professor, Imam Hossein University, Tehran, Iran
3 Researcher, Imam Hossein University . Tehran, Iran
چکیده [English]

Dose evaluation of radioactive materials is one of the main safety categories of reactors and nuclear facilities. The spread of radioactive materials, which may be caused by an accident in a nuclear facility, can cause radiation hazards to humans and the environment, in such a situation, the dose should be evaluated and, if necessary, appropriate control measures should be taken into account. In this article, it is assumed that the ABV reactor, which is a small modular reactor, has been installed in order to supply energy to industrial facilities around Mobarake city, located in Isfahan province. The main goal of this research is to investigate the atmospheric release of cesium-134 and cesium-137 caused by a hypothetical core meltdown incident in this reactor. The amount of cesium-134 and 137 radioisotopes present in the reactor core at the time of the accident, which was calculated in the previous works of the authors, is assumed as a radiation source. Then, using RASCAL software and assuming that the release time of these two radioisotopes is one hour, their atmospheric distribution has been investigated in two days after the accident and up to a radius of 80 km. In this research, total effective dose of TEDE, thyroid dose, inhaled CEDE, as well as the surface pollution of these two isotopes have been calculated and their distribution pattern up to 80 km distance from the accident site has been drawn.

کلیدواژه‌ها [English]

  • Small Modular Reactor
  • Nuclear Accident
  • RASCAL Code
  • Dose Rate
  • Cs-134
  • Cs-137

Smiley face

 

   [1]      Tan, K. W. “Commercialization Potential of Dye-Sensitized Mesoscopic Solar Cells”; Massachusetts Institute of Technology, 2008. 
   [2]      Chu, S.; Majumdar, A. “Opportunities and Challenges for a Sustainable Energy Future”; Nature 2012 488, 294–303. 
   [3]      Nason, P.; Webber, B. “Next-to-Leading-Order Event Generators”; Annu. Rev. Nucl. Part. Sci. 2012, 62, 187–213.
   [4]      Shafiee, S.; Topal, E. “An Econometrics View of World wide Fossil Fuel Consumption and the Role of Us”; Energy Policy 2008, 36 , 775–786.
   [5]      Bodansky, D. “Nuclear Energy: Principles, Practices, and Prospects”; Springer Science & Business Media 2007. 
   [6]      Kuznetsov, V. “Options for Small and Medium Sized Reactors (SMRs) to Overcome Loss of Economies of Scale and Incorporate Increased Proliferation Resistance and Energy Security”; Prog. Nucl. Energy 2008, 50, 242–250. https://doi.org/10.1016/j.pnucene.2007.11.006
   [7]      Budnitz, R. J. H.; Rogner, H.; Shihab-Eldin, A. “Expansion of Nuclear Power Technology to New Countries–Smrs, Safety Culture Issues, and the Need for an Improved International Safety Regime”; Energy Policy 2018, 119, 535–544. https://doi.org/10.1016/j.enpol.2018.04.051
   [8]      Hussein, E. M. A. “Emerging Small Modular Nuclear Power Reactors: A Critical Review”; Phys. Open 2020 , 5. https://doi.org/10.1016/j.physo.2020.100038. 
   [9]      Agency, I. A. E. Status of Small Reactor Designs Without on-Site Refuelling. International Atomic Energy Agency, 2007. https://doi.org/10.1115/ICONE14-89318.
[10]      Mialle, S.; Richter, S.; Truyens, J.; Hennessy, C.; Jacobsson, U.; Aregbe, Y. “Certification of the Uranium Hexafluoride (Uf6) Isotopic Composition: the IRMM-019 to IRMM-029 series”; Certif. Rep. 2014. 
[11]      Oe, M.; Takebayashi, Y.; Sato, H.; Maeda, M. “Mental Health Consequences of the Three Mile Island, Chernobyl, and Fukushima Nuclear Disasters: A Scoping Review”; Int. J. Environ. Res. Public Health 2021, 18, 7478. https://doi.org/10.3390/ijerph18147478
[12]      Alexakhin, R. Environmental Consequences of the Chernobyl Accident and Their Remediation: Twenty Years of Experience. Report of the Chernobyl Forum Expert Group “Environment”; International Atomic Energy Agency, 2006. 
[13]      Hong, G. H. “Radioactive Impact in South Korea From the Damaged Nuclear Reactors in Fukushima: Evidence of  Long and Short Range Transport”; J. Radiol. Prot. 2012 , 32, 397. 
[14]      Draxler, R. “World Meteorological Organization’s Model Simulations of the Radionuclide Dispersion and Deposition From the Fukushima Daiichi Nuclear Power Plant Accident”; J. Environ. Radioact. 2015, 139, 172–184. https://doi.org/10.1016/j.jenvrad.2013.09.014.
[15]      Kindap, T.; Turuncoglu, U. U.; Chen,S.; Unal, H. A.; Karaca, M. “Potential Threats From a Likely Nuclear Power Plant Accident: A Climatological Trajectory Analysis and Tracer Study”; Water Air. Soil Pollut. 2009, 198, 393–405.
[16]      Hernández-Ceballos, M. A. “Tracking the Complete Revolution of Surface Westerlies Over Northern Hemisphere Using Radionuclides Emitted From Fukushima”; Sci. Total Environ. 2012, 438, 80–85. https://doi.org/10.1016/j.scitotenv.2012.08.024
[17]      Liu, L. “Monitoring of Atmospheric Radionuclides From the Fukushima Nuclear Accident and Assessing Their Impact on Xi’an, China”; Chinese Sci. Bull. 2013, 58, 1585–1591. https://doi.org/10.1007/s11434-012-5521-4
[18]      Dvorzhak, A.; Puras, C.; Montero, M.; Mora, J. C. “Spanish Experience on Modeling of Environmental Radioactive Contamination due to Fukushima Daiichi NPP Accident Using JRODOS”; Environ. Sci. Technol. 2012, 46, 11887–11895. 
[19]      Awan, S. E.; Mirza, N. M.; Mirza, S. M. “Kinetic Study of Fission Product Activity Released Inside Containment Under Loss of Coolant Transients in a Typical Mtr System”; Appl. Radiat. Isot 2012, 70, 2711–2719. https://doi.org/ 10.1016/j.apradiso.2012.08.002.
[20]      ANNEX, V.; OKBM, A. B. V. “V-1.1. Introduction,”; Status Small React. Des. Without on-Site Refuelling, 2007, 235. 
[21]      Karimi, J.; Shayesteh, M.; Zangian, M. “Investigation of Uo2 Fuel Efficiency for ABV Small Modular Reactor”; Energy Sources, Part a Recover. Util. Environ. Eff., 2021, 1–19. https://doi.org/10.1080/15567036.2021.1967516.
[22]      Khan, S. U.; Danish, S. N.; Haider, S.; Khan, S. U. “Theoretical Calculation Simulation Studies of ABV Nuclear Reactor Coupled with Desalination System”; Int. J. Energy Res. 2015, 39, 1554–1563. https://doi.org/10.1002/ er.3363.
[23]      Karimi, J.; Shayesteh, M.; Zangian, M. “Core Calculations for Small Modular Reactor During Burnup Cycle”; Energy Sources, Part a Recover. Util. Environ. Eff. 2021, 1–18. https://doi.org/10.22034/rpe.2021.286704.1030 
[24]      Karimi, J.; Shayesteh, M.; Zangian, M. “Neutronic Analysis of Different Patterns of ABV Reactor Core Using Low Enrichment UO2 Fuel”; Radiat. Phys. Eng 2021, 2, 37–42. https://doi.org/10.22034/rpe.2021.286704.1030
[25]      Su, L.; Yuan, Z.; Fung, J. C. H.; Lau, A. K. H. “A Comparison of  HYSPLIT Backward Trajectories Generated From Two GDAS Datasets”; Sci. Total Environ. 2015, 506, 527–537. https://doi.org/10.1016/j.scitotenv.2014.11.072
[26]      Mcguire, S. A.; Ramsdell, J. V.; Athey,G. F. “RASCAL 3.0. 5: Description of Models and Methods. Office of Nuclear Security and Incident Response, US Nuclear Regulatory”; 2007. 
[27]      Ramsdell, J. V.; Athey, G. F.; Rishel, J. P. “RASCAL 4: Description of Models and Methods. United States Nuclear Regulatory Commission, Office of Nuclear Security and … ”; 2012. https://doi.org/10.1504/PIE.2018.095869. 
[28]      Faisal, S. I.; Islam, M. S.; Soner, M. A. M. “Prediction of Radioactivity Releases for a Long-Term Station Blackout Event in the Vver-1200 Nuclear Reactor of Bangladesh”; Nucl. Eng. Technol. 2023, 55, 696–706. https://doi.org /10.1016/j.net.2022.10.003.
[29]      Jabbari, M.; Hadad, K.; Pirouzmand, A. “Re-assessment of Station Blackout Accident in VVER-1000 NPP With Additional Measures Following Fukushima Accident Using Relap/Mod3.2”; Ann. Nucl. Energy 2019, 129, 316–330. https://doi.org/10.1016/j.anucene.2019.02.006.
[30]      Draxler, R. R.; Stunder, B.; Rolph, G.; Stein, A.; Taylor, A. “HYSPLIT tutorial”; NOAA Air Resour. Lab. Silver Spring, MD, USA, 2012.
[31]      Ramsdell Jr, J. V. “Rascal 4.3. Dispersion and Deposition Models”; Proc. 18th Annu. George Mason Univ. Conf. Atmospheric Transport and Dispersion Modelling 2014. 
[32]      Nuclear Regulatory Commission (U.S.) (NRC), “Criteria for Preparation and Evaluation of Radiological Emergency Response Plans and Preparedness in Support of Nuclear Power Plants”; 2015, 2, Available: