تهیه نانوکامپوزیت‌های آهن کربونیل/ نانولوله کربن و بررسی خواص جذب امواج الکترومغناطیسی آن‌ها در فرکانس‌های راداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشگاه صنعتی مالک اشتر، تهران ، ایران

2 کارشناسی ارشد دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

یکی از نیازهای روبه‌رشد برای صنایع نظامی و غیرنظامی، توسعه جاذب‌های امواج ریزموج و راداری است. کاهش وزن جاذب‌ها، بهبود خواص، جذب قوی و پهنای باند جذبی از ویژگی‌های مهم در استفاده از این ترکیبات هستند. یکی از مناسب‌ترین این ترکیبات، جاذب نانوکامپوزیت نانولوله کربنی/ فلزات مغناطیسی هستند که در این پژوهش نانوکامپوزیت‌هایی با درصد وزنی مختلف کربونیل آهن  و نانولوله کربنی از طریق روش اختلاط همگن تهیه شدند و خاصیت جذب امواج ریزموج آنها در محدوده فرکانس راداری (8 تا 18 گیگاهرتز)   مورد مطالعه قرار گرفت. تصاویر پراش اشعه ایکس و میکروسکوپ الکترونی روبشی نانوکامپوزیت‌ها یک اختلاط همگن و یکنواخت از ذرات نانولوله کربنی و کربونیل آهن در ماتریس را نشان داد. همچنین، نتایج جذب امواج نشان داد که با افزایش کربونیل آهن به نانولوله کربن و تشکیل جاذب نانوکامپوزیت بر پایه نانولوله کربنی، میزان جذب و پهنای باند جذبی افزایش می‌یابد. برای نانوکامپوزیت حاوی %70 وزنی کربونیل آهن، بیشترین میزان اتلاف بازتاب به مقدار 33/11 دسی بل  در فرکانس 18 گیگاهرتز و در پهنای باند 1/10 تا 18 گیگاهرتز ، میزان اتلاف بیشتر از 4 دسی بل به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Preparation of Carbon Nanotube/Carbonyl Iron Nanocomposites and Investigation of Their Electromagnetic Waves Absorbing Properties at Radar Frequencies

نویسندگان [English]

  • Ali Reza Zarei 1
  • Mehdi Mozafarzadeh 2
1 Faculty of Chemistry and Chemical Engineering- Malek Ashtar University of Technology- Tehran-Iran,
2 Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran
چکیده [English]

Use of microwave absorbers and radar-absorbing materials is one of the growing needs in military and civilian applications. Weight reduction, improvement of absorbing characteristics, high microwave absorption and wide operating bandwidths are important issues in absorbing materials. One of the most suitable compounds is nanocomposite of carbon nanotubes/magnetic metals. In this work, nanocomposites of carbonyl iron (CI) and multi-walls carbon nanotubes (MWCNT) with different %Wt via homogeneously mixing with paraffin were prepared and their microwave absorbing properties were investigated in the frequency range of 8-18 GHz. SEM and XRD images of nanocomposites showed uniform dispersion of MWCNT and CI particles in the matrix.Also, the results of wave absorption showed that by increasing of iron carbonyl respect to carbon nanotubes and the formation of carbon nanotube-based nanocomposite absorbers, the absorption and absorption bandwidth increase. For the nanocomposite containing 70% by weight of carbonyl iron, the highest amount of reflection loss was 11.33 dB at the frequency of 18 GHz. Also, in the bandwidth of 10.1 GHz to 18 GHz, the amount of reflection loss was obtained more than 4 dB.
.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Carbon nanotube
  • Multi-Walled Carbon Nanotubes
  • Carbonyl Iron
  • Microwave Absorbers

Smiley face

  1. Egami, Y.; Yamamoto, T.; Suzuki, K.; Yasuhara, T.; Higuchi, E.; Inoue, H. “Stacked Polypyrrole-Coated Non-woven Fabric Sheets for Absorbing Electromagnetic Waves with Extremely High Frequencies”; Mater. Sci. 2012, 47, 382-390.
  2. Tan, E.; Kagawa, Y.; Dericioglu, A.“Electromagnetic Wave Absorption Potential of SiC-Based Ceramic Woven Fabrics in the GHz Range”; Mater. Sci. 2009, 44, 1172-1179.
  3. Touzopoulos, P.; Boviatsis, D.; Zikidi, K. C. “Constructing a 3D Model of a Complex Object from 2D Images, for the Purpose of Estimating its Radar Cross Section (RCS)”; J. Comput. Math. Model. 2017,7,15-28.
  4. Wu, H.; Wu, G.; Wang, L. “Peculiar Porous α-Fe2O3, γ-Fe2O3 and Fe3O4 Nanospheres: Facile Synthesis and Electromagnetic Properties”; Powder Technol. 2015, 269, 443-451.
  5. Ren, Y.; Yang, L.; Wang, L.; Xu, T.; Wu, G.; Wu, H. ”Facile Synthesis, Photoluminescence Properties and Microwave Absorption Enhancement of Porous and Hollow ZnO Spheres”; Powder Technol. 2015, 281, 20–27.
  6. Council, N. “Opportunities in Biotechnology for Future Army Applications”; National Academies Press, 2001
  7. Das, S.; Nayak, G. C.; Sahu, S. K.; Routray, P. C.; Roy, A. K.; Baskey, H. “Microwave Absorption Properties of Double-Layer RADAR Absorbing Materials Based on Doped Barium Hexaferrite/TiO2/Conducting Carbon Black”; J. Eng. 2014, 1-6.
  8. Feng, Y.; Li, D.; Jiang, L.; Dai, Z.; Wang, Y.; An, J.; Ren, W.; He, J.; Wang, Z.; Liu, W.; Zhang, Z. “Interface Transformation for Enhanced Microwave-Absorption Properties of Core Double-Shell Nanocomposites”; J. Alloys. Compd. 2017, 694, 1224-1231.
  9. Yanmin, T. L.; Wang, L.; Zhao, Z.; Gu, Y. “Research Progress on Nanostructured Radar Absorbing Materials”; Energy power Eng. 2011, 3, 580-584.
  10. Hua, J.; Li, Y.; Liu, X.; Li, X.; Lin, S.; Gu, J.; Cui, Z. K. “Graphene/MWNT/Poly(phenylenebenzobisoxazole) Multiphase Nanocomposite via Solution Prepolymerization with Superior Microwave Absorption Properties and Thermal Stability”; J. Phys. Chem. C. 2017, 121, 1072-1080.
  11. Ma C. C. M.; Huang, Y. L.; Kuan, H. C. “Preparation and Electromagnetic Interference Shielding Characteristics of Novel Carbon‐Nanotube/Siloxane/Poly(Urea Urethane) Nanocomposites”; J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 345-358.
  12. Liu, L.; Kong, L.B.; Yin, W.Y.; Matitsine, S. “Characterization of Single-and Multiwalled Carbon Nanotube Composites for Electromagnetic Shielding and Tunable Applications”; IEEE Trans. Electromagn. Compat. 2011, 53, 943-949.
  13. Park, K. Y.; Han, H.; Lee, S. B.; Yi, J. W. “Microwave Absorbing Hybrid Composites Containing Ni–Fe Coated Carbon Nanofibers Prepared by Electroless Plating”; Compos. Pt. A. Appl. Sci. Manuf. 2011, 42, 573-578.
  14. Sahu, P.; Abdallah, A. M.;  Fattah, A. R.;  Ghosh, S.;  Puri, I. K. “Synthesis, Characterization, and Applications of Carbon Nanotubes Functionalized with Magnetic Nanoparticles”; Advances in Nanomaterials  2018, 37-57.
  15. Wu, Q.; Wu, G.; Wang, L; Hu, W.; Wu, H. “Facile Synthesis and Optical Properties of Prussian Blue Microcubes and Hollow Fe2O3 Microboxes”; Mater. Sci. Semicond. Process 2015, 30, 476-481.
  16. Liu, Y.; Liu, X.; Wang, X. “Double-layer Microwave Absorber Based on CoFe2O4 Ferrite and Carbonyl Iron Composites”; Alloys Compd. 2014, 584, 249-253.
  17. Micheli, D.; Vricella A.; Pastore, R.; Marchetti, M. “Synthesis and Electromagnetic Characterization of Frequency Selective Radar Absorbing Materials Using Carbon Nanopowders”; Carbon 2014, 77, 756-774.
  18. Wu, G.; Cheng, Y.; Xie, Q.; Jia, Z.; Xiang, F.; Wu, H. “Facile Synthesis of Urchin-Like ZnO Hollow Spheres with Enhanced Electromagnetic Wave Absorption Properties”; Mater. Lett. 2015, 144, 157-160.
  19. Xie, Z.; Geng, D.; Liu, X.; Ma, S.; Zhang, Z. J. “Magnetic and Microwave-Absorption Properties of Graphite-Coated (Fe, Ni) Nanocapsules”; Mater. Sci. Technol. 2011, 27, 607-614.
  20. Bystrzejewski, M.; Karoly, Z.; Szepvolgyi, J.; Kaszuwara, W.; Huczko, A.; Lange, H. “Continuous Synthesis of Carbon-Encapsulated Magnetic Nanoparticles with a Minimum Production of Amorphous Carbon”; Carbon 2009, 47, 2040-2048.
  21. Singh, A.; Lavigne, P. “Deposition of Diamond-Like Carbon Films by Low Energy Ion Beam and Dc Magnetron Sputtering”; Surf. Coat Technol. 1991, 47, 188-200.
  22. Dumitrache, F.; Morjan, I.; Fleaca, C.; Birjega, R.; Vasile, E.; Kuncser, V.; Alexandrescu, R. “Parametric Studies on Iron–Carbon Composite Nanoparticles Synthesized by Laser Pyrolysis for Increased Passivation and High Iron Content”; Appl. Surf. Sci. 2011, 257, 5265-5269.
  23. Yu, F.; Wang, J. N.; Sheng, Z. M.; Su, L. F. “Synthesis of Carbon-Encapsulated Magnetic Nanoparticles by Spray Pyrolysis of Iron Carbonyl and Ethanol”; Carbon 2005, 43, 3018-3021.
  24. Ugarte, D. “How to Fill or Empty a Graphitic Onion”; Chem. Phys. Lett. 1993, 209, 99-103.
  25. Wang, Z.; Guo, H.; Yu, Y.; He, N. “Synthesis and Characterization of a Novel Magnetic Carrier with its Composition of Fe3O4/Carbon using Hydrothermal Reaction”; J. Magn. Mater. 2006, 302, 397-404.
  26. Liu, J. R.; Itoh, M.; Horikawa, T.; Machida, K. I.; Sugimoto, S.; Maeda, T. “Gigahertz Range Electromagnetic Wave Absorbers Made of Amorphous-Carbon-Based Magnetic Nanocomposite”; J. Appl. Phys. 2005, 98, 054305.