استخراج نانو سلولز کریستالی از تفاله چغندرقند و مشخصه‌سازی آن

نوع مقاله : نانوفناوری

نویسندگان

1 دانشجوی دکترا، دانشگاه صنعتی مالک اشتر، تهران، ایران

2 استادیار،دانشگاه صنعتی مالک اشتر، تهران، ایران

3 استاد، دانشگاه صنعتی مالک اشتر، تهران، ایران

چکیده

نانو سلولز کریستالی به دلیل خواصی مانند نسبت سطح ویژه زیاد، بلورینگی بالا و خواص مکانیکی و نوری خوب به‌عنوان یک ماده کاربردی شناخته می‌شود. این ماده به‌عنوان یک کلاس مواد جدید برای محصولات نظامی پیشرفته مانند جلیقه‌های ضدگلوله، مواد مقاوم در برابر آتش، پیشرانه‌ها و محصولات الکترونیکی ظهور کرده است. در این تحقیق سلولز با خلوص بالا از تفاله چغندرقند به روش خمیرسازی سودا - آنتراکینون استخراج و برای حذف حداکثر همی سلولز  و لیگنین سفیدکاری انجام شد. سپس از سلولز استخراج شده با سولفوریک اسید 64% نانو سلولز کریستالی تولید گردید. نانو سلولز کریستالی حاصل با استفاده از پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی عبوری (TEM)، طیف‌سنجی مادون‌قرمز-تبدیل فوریه (FTIR) و دستگاه وزن سنج حرارتی (TGA) مشخصه‌یابی شد. تجزیه‌وتحلیل میکروسکوپ الکترونی عبوری وجود نانو سلولز کریستالی را تأیید کرد. هیدرولیز با سولفوریک اسید غلیظ باعث افزایش تبلور سلولز گردید و ابعاد آن به را مقیاس نانو کاهش داد. قطر نانو سلولز کریستالی در محدوده کمتر از nm۲۰، طول آن در محدودهnm ۲۰۰-۴۰۰ و راندمان تولیدش ۵۳% گزارش ‌شده که قابل‌مقایسه با نانو سلولز کریستالی حاصل از منابع چوبی و دیگر زیست‌توده‌هاست. این محصول قابلیت بکار بردن در انواع کاربردهای نظامی اعم از کامپوزیت‌های مقاوم و سبک، سطوح دارای خصوصیت ضدخوردگی و پانسمان‌ را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Extraction of Cellulose Nanocrystal from Sugar Beet Pulp and its Characterization

نویسندگان [English]

  • Seyed Meisam Fatemi 1
  • Seyed Morteza Robatjazi 2
  • Ali Reza Zarei 3
  • Seyed Ghorban Hosseini 3
1 Department of Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
2 Department of Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran
3 Department of Chemistry, Faculty of Chemistry, Malek Ashtar University of Technology, Tehran, Iran
چکیده [English]

.
Cellulose nanocrystal is a functional material because of its properties like high specific surface ratio, high crystallinity, and good mechanical and optical properties. It has emerged as a new material class for advanced military products such as bulletproof vests, fire-resistant materials, propellants, and electronic products. In this study, high purity cellulose was extracted from sugar beet pulp by soda-anthraquinone pulping method and bleached to remove maximum hemicellulose and lignin. Then cellulose nanocrystal was produced from extracted cellulose with 64% sulfuric acid. The resulting crystalline nanocellulose was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transforms infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA). Transmission electron microscopy analysis confirmed the presence of cellulose nanocrystal. Hydrolysis with concentrated sulfuric acid increased the crystallization of bleached cellulose and reduced its size to the nanoscale. The diameter of cellulose nanocrystal was less than 20 nm, the length was in the 200-400 nm range, and the production yield was 53%, which is comparable to cellulose nanocrystal from wood and other biomass sources. This product can be used in various military applications, including durable and lightweight composites, surfaces with anti-corrosion properties, and bandages.

کلیدواژه‌ها [English]

  • Crystalline Nanocellulose
  • Sugar Beet Pulp
  • Soda-Anthraquinone Pulping
  • Acid Hydrolysis

Smiley face

[1]   Zanidis, T. “The World Defense Expenditure 2019 and trends in the Covid19 era”; HAPSc Policy Briefs Ser. 2020, 140–148.
[2]   Sargent, J. F. “Government Expenditures on Defense Research and Development by the United States and Other OECD Countries: Fact Sheet”; Washington, DC Congr. Res. Serv, 2018.
[3]   Council, N. R. Materials Research to Meet 21st-Century Defense Needs. National Academies Press, 2003.
[4]   Kumar, N.; Dixit, A. “Role of Nanotechnology in Futuristic Warfare”; Nanotechnology for Defence Applications, Springer, 2019, 301–329.
[5]   Deshpande, A.; Agarwal, M.; Shrestha, S.; Giakos, G. C. “Nanoscale Spectroscopy for Defense and National Security”; Nanoscale Spectroscopy with Applications, CRC Press, 2018, 501–529.
[6]   Altmann, J. “Military Nanotechnology: Potential Applications and Preventive Arms Control”; Routledge, 2007.
[7]   Singh, P. “From Cellulose Dissolution and Regeneration to Added Value Applications—Synergism between Molecular Understanding and Material Development”; Cellul. Asp. Curr. Trends 2015, 1-44.
[8]   Habibi, Y.; Lucia, L. A.; Rojas, O. J. “Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications”; Chem. Rev. 2010, 3479–3500.
[9]   Toğrul, H.; Arslan, N. “Flow Properties of Sugar Beet Pulp Cellulose and Intrinsic Viscosity–Molecular Weight Relationship”; Carbohydr. Polym. 2003, 63–71.
[10] Martani, F. “Conversion of Sugar Beet Residues into Lipids by Lipomyces Starkeyi for Biodiesel Production”; Microb. Cell Fact. 2020, 1–13.
[11] Ziemiński, K.; Kowalska-Wentel, M. “Effect of Enzymatic Pretreatment on Anaerobic Co-Digestion of Sugar Beet Pulp Silage and Vinasse”; Bioresour. Technol. 2015, 274–280.
[12] Modelska, M. “Concept for Recycling Waste Biomass From the Sugar Industry for Chemical and Biotechnological Purposes”; Molecules 2017, 1544.
[13] Toğrul, H.; Arslan, N. “Production of Carboxymethyl Cellulose from Sugar Beet Pulp Cellulose and Rheological Behaviour of Carboxymethyl Cellulose”; Carbohydr. Polym. 2003, 73–82.
[14] Ghazy, M. B.; Esmail, F. A.; El-Zawawy, W. K.; Al-Maadeed, M. A.; Owda M. E. “Extraction and Characterization of Nanocellulose Obtained from Sugarcane Bagasse as Agro-Waste”; J. Adv. Chem. 2016.
[15] Chen, M.; Ma Q.; Zhu, J. Y.; Alonso, D. M.; Runge, T.  “GVL Pulping Facilitates Nanocellulose Production from Woody Biomass”; Green Chem. 2019, 5316–5325.
[16] Dufresne, A. Nanocellulose: from nature to high performance tailored materials. Walter de Gruyter GmbH & Co KG, 2017.
[17] Norrrahim, M. N. F. “Nanocellulose: the Next Super Versatile Material For The Military”; Mater. Adv. 2021.
[18] Okahisa, Y.; Yoshida, A.; Miyaguchi, S.; Yano, H. “Optically Transparent Wood–Cellulose Nanocomposite as a Base Substrate for Flexible Organic Light-Emitting Diode Displays”; Compos. Sci. Technol. 2009, 1958–1961.
[19] Dufresne, A. “Nanocellulose: Potential Reinforcement in Composites”; Nat. Polym. 2012, 1–32.
[20] Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. “Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites”; Chem. Soc. Rev. 2011, 3941–3994.
[21] Bras, J.; Hassan, M. L.; Bruzesse, C.; Hassan, E. A.; El-Wakil, N. A.; Dufresne, A. “Mechanical, Barrier, and Biodegradability Properties of Bagasse Cellulose Whiskers Reinforced Natural Rubber Nanocomposites”; Ind. Crops Prod. 2010, 627–633.
[22] Toha, N. “Preliminary development of Laminated Nanocomposite from Nanocellulose-Kevlar for Military Application”; Int. J. Curr. Res. Sci. Eng. Technol. 2018, 1, 30967.
[23] Wang, B.; Sain, M. “Isolation of Nanofibers from Soybean Source and their Reinforcing Capability on Synthetic Polymers”; Compos. Sci. Technol. 2007, 2521–2527.
[24] Hayase, G.; Kanamori, K.; Hasegawa, G.; Maeno, A.; Kaji, H.; Nakanishi, K. “A Superamphiphobic Macroporous Silicone Monolith with Marshmallow‐Like Flexibility”; Angew. Chem. 2013, 10988–10991.
[25] Liu, K.; Tian, Y.; Jiang, L. “Bio-Inspired Superoleophobic and Smart Materials: Design, Fabrication, and Application”; Prog. Mater. Sci. 2013, 503–564.
[26] Si, Y.; Guo, Z. “Superhydrophobic Nanocoatings: From Materials to Fabrications and to Applications”; Nanoscale 2015, 5922–5946.
[27] Habibi, Y. “Key Advances in the Chemical Modification of Nanocelluloses”; Chem. Soc. Rev. 2014, 1519–1542.
[28] Phanthong, P. “Amphiphobic Nanocellulose-Modified Paper: Fabrication and Evaluation”; RSC Adv. 2016, 13328–13334.
[29] Iwamoto, S.; Nakagaito, A. N.; Yano, H.; Nogi, M. “Optically Transparent Composites Reinforced with Plant Fiber-Based Nanofibers”; Appl. Phys. 2005, 1109–1112.
[30] Yang, H.,; Tejado, A.; Alam, N.; Antal, M.; van de Ven, T. G. M. “Films Prepared from Electrosterically Stabilized Nanocrystalline Cellulose”; Langmuir 2012, 7834–7842.
[31] Abitbol, T. “Nanocellulose, a Tiny Fiber with Huge Applications”; Curr. Opin. Biotechnol. 2016, 76–88.
[32] Pandey, A. “Pharmaceutical and Biomedical Applications of Cellulose Nanofibers: A Review”; Environ. Chem. Lett. 2021, 1–13.
[33] Das, S.; Ghosh, B.; Sarkar, K. “Nanocellulose as Sustainable Biomaterials for Drug Delivery”; Sensors Int. 2022, 100135.
[34] Subhedar, A.; Bhadauria, S.; Ahankari, S.; Kargarzadeh, H. “Nanocellulose in Biomedical and Biosensing Applications: A Review”; Int. J. Biol. Macromol. 2021, 587–600.
[35] Klemm, D. “Nanocelluloses: A New Family of Nature‐Based Materials”; Angew. Chem. Int. Ed. 2011, 5438–5466.
[36] Xing, L.; Gu, J.; Zhang, W.; Tu, D.; Hu, C. “Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra Pak Cellulose I”; Carbohydr. Polym. 2018, 184–192.
[37] Beltramino, F.; Roncero, M. B.; Torres, A. L.; Vidal, T.; Valls, C. “Optimization of Sulfuric Acid Hydrolysis Conditions for Preparation of Nanocrystalline Cellulose from Enzymatically Pretreated Fibers”; Cellulose 2016, 1777–1789.
[38] Ventorim, G.; Favaro, J. S. C.; Frigieri, T. C. “Effect of Kraft Pulping Temperature and Alkalinity on Eucalyptus ECF Bleaching”; Cellul. Chem. Technol. 2016, 1025–1033.
[39] Barros, P. J. “Soybean Hulls: Optimization of the Pulping and Bleaching Processes and Carboxymethyl Cellulose Synthesis”; Int. J. Biol. Macromol. 2020, 208–218.
[40] Emmans, G. C.; Cropper, M. R.; Dingwall, W. S.; Brown, H.; Oldham, J. D.; Harland, J. I. “Efficiencies of Use of the Metabolisable Energy From Feeds Based on Barley or Sugar Beet Feed in Immature Sheep”; Proc. Br. Soc. Anim. Prod. 1989, 60.
[41] Alves, J. A. A. “Sorghum Straw: Pulping and Bleaching Process Optimization and Synthesis of Cellulose Acetate”; Int. J. Biol. Macromol. 2019, 877–886.
[42] Dong, X. M.; Revol, J. F.; Gray, D. G. “Effect of Microcrystallite Preparation Conditions on the Formation of Colloid Crystals of Cellulose”; Cellulose 1998, 19–32.
[43] Chen, L.; Wang, Q.; Hirth, K.; Baez, C.; Agarwal, U. P.; Zhu, J. Y. “Tailoring the Yield and Characteristics of Wood Cellulose Nanocrystals (CNC) Using Concentrated Acid Hydrolysis”; Cellulose 2015, 1753–1762.
[44] Segal, L.; Creely, J. J.; Martin Jr, A. E.; Conrad, C. M. “An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using The X-Ray Diffractometer”; Text. Res. J. 1959, 786–794.
[45] Nam, S.; French, A. D.; Condon, B. D.; Concha, M. “Segal Crystallinity Index Revisited by the Simulation of X-Ray Diffraction Patterns of Cotton Cellulose Iβ and Cellulose II”; Carbohydr. Polym. 2016, 1–9.
[46] Wise, L. E. “Chlorite Holocellulose, Its Fractionation and Bearing on Summative Wood Analysis and on Studies on the Hemicelluloses”; Pap. Trade 1946, 35–43.
[47] Khan, A.; Jawaid, M.; Kian, L. K.; Khan, A. A. P. ; Asiri, A. M. “Isolation and Production of Nanocrystalline Cellulose from Conocarpus Fiber”; Polymers 2021, 11-19.
[48] Gupta, V.; Ramakanth, D.; Verma, C.; Maji, P. K.; Gaikwad, K. K. “Isolation and Characterization of Cellulose Nanocrystals from Amla (Phyllanthus Emblica) Pomace”; Biomass Conversion and Biorefinery 2021, 10-12.
[49] Zarei, A. R.; Pourabdollahi, H. “Synthesis of Carbon Nanotube/Iron-Nickel Nanocomposite by Reduction in Solution Method as Radar Absorbing Nanostracture”;  Adv. Defense Sci. & Technol. 2018, 59-66. (in Persian.(