[1] Revaud, J.; Weinzaepfel, P.; Harchaoui, Z., Schmid, C. “Epic Flow: Edge-Preserving Interpolation of Correspondences for Optical Flow”; IEEE Conf. Comput. Vision Pattern Recgn. 2015, 1164-1172.##
[2] Sun, D., Roth, S., Black, M. J. “A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them”; Int. J. Comput. Vision 2014, 106, 115-137.##
[3] Butler, D. J.; Wulff, J.; Stanley, G. B.; Black, M. J. “A Naturalistic Open Source Movie for Optical Flow Evaluation”; European Conf. Computer Vision 2012, 7577, 611-625.##
[4] Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. “Vision Meets Robotics: The KITTI Dataset”; Int. J. Robot. Res. 2013, 32, 1231-1237.##
[5] Yamaguchi, K.; McAllester, D. A.; Urtasun, R. “Robust Monocular Epipolar Flow Estimation”; Proc. CVPR IEEE 2013, 1862–1869.##
[6] Yamaguchi, K.; McAllester, D. A.; Urtasun, R. “Efficient Joint Segmentation, Occlusion Labeling, Stereo and Flow Estimation”; European Conf. Computer Vision 2014, 8693, 756-771.##
[7] Lucas, B.; Kanade, T. “An Iterative Image Registration Technique with an Application to Stereo Vision (DARPA)”; Proc. DARPA Image Understanding Workshop 1981, 121-130.##
[8] Horn, B. K. P.; Schunk, B. G. “Determining Optical Flow”; Artif. Intell. Rev. 1981, 17, 185-203.##
[9] Papenberg, N.; Bruhn, A.; Brox, T.; Didas, S.; Weickert, J. “Highly Accurate Optic Flow Computation with Theoretically Justified Warping”; Int. J. Comput. Vision 2006, 67, 141-158.##
[10] Yang, H.; Lin, W.; Lu, J. “DAISY Filter Flow: A Generalized Discrete Approach to Dense Correspondences”; IEEE Conf. Comput. Vision Pattern Recgn. 2014.##
[11] Bao, L.; Yang, Q.; Jin, H. “Fast Edge-Preserving Patch Match for Large Displacement Optical Flow”; IEEE Trans. Image Process. 2014, 23, 4996-5006.##
[12] Menze, M.; Heipke, C.; Geiger, A. “Discrete Optimization for Optical Flow”; German Conf. Pattern Recogn. 2015, 9358, 16-28.##
[13] Yang, J.; Li, H. “Dense, Accurate Optical Flow Estimation With Piecewise Parametric Model”; IEEE Conf. Comput. Vision Pattern Recgn. 2015, 1019-1027.##
[14] Sun, D.; Liu, C.; Pfister, H. “Local Layering for Joint Motion Estimation and Occlusion Detection”; IEEE Conf. Comput. Vision Pattern Recgn. 2014, 1098-1105.##
[15] Sevilla-Lara, L.; Sun, D.; Jampani, V.; Black, M. J. “Optical Flow with Semantic Segmentation and Localized Layers”; IEEE Conf. Comput. Vision Pattern Recgn. 2016, 3889-3898.##
[16] Farsi H.; Behmadi, S. "Video Quality Improvement Using Local Channel Encoder and Mixed Predictor by Wavelet, Neural Network and Genetic Algorithm"; J. Adv. Defense Sci. Technol. 2018, 9, 449-459.##
[17] Zbontar, J.; LeCun, Y. “Computing the Stereo Matching Cost with a Convolutional Neural Network”; IEEE Conf. Comput. Vision Pattern Recgn. 2015, 1592–1599.##
[18] Luo, W.; Schwing, A. G.; Urtasun, R. “Efficient Deep Learning for Stereo Matching”; IEEE Conf. Comput. Vision Pattern Recgn. 2016, 5695–5703.##
[19] Geiger, A.; Lenz, P.; Urtasun, R. “Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite”; IEEE Conf. Comput. Vision Pattern Recgn. 2012.##
[20] Badrinarayanan, V.; Kendall, A.; Cipolla, R. “SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation”; IEEE Trans. Pattern Anal. 2017, 39, 2481-2495.##
[21] Chantas, C.; Gkamas, T.; Nikou, C. “Variational-Bayes Optical Flow”; Journal of Mathematical and Imaging Vision 2014, 50, 199-213.##
[22] Brostow, G. J.; Fauqueur, J.; Cipolla, R. “Semantic Object Classes in Video: A High-Definition Ground Truth Database”; Pattern Recogn. Lett. 2009, 30, 88-97.##
[23] Tan, Z.; Liu, B.; Yu, N. “PPEDNet: Pyramid Pooling Encoder-Decoder Network for Real-Time Semantic Segmentation”; Int. Conf. Image and Graphics 2017, 328-339.##
[24] Everingham, M.; Eslami, S. M. A.; Van Gool, L.; Williams, C. K. I.; Winn, J.; Zisserman, A. “The Pascal Visual Object Classes Challenge: A Retrospective”; Int. J. Computer Vision 2015, 111, 98-136.##
[25] Sharmin, N.; Brad, R. “Optimal Filter Estimation for Lucas-Kanade Optical Flow”; Sensors 2012, 12, 12694-12709.##
[26] Sun, D.; Yang, X.; Liu, M. Y.; Kautz, Y. “PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume”; IEEE Conf. Comput. Vision Pattern Recgn. 2018.##
[27] Shelhamer, E.; Long, J.; Darrell, T. “Fully Convolutional Networks for Semantic Segmentation”; IEEE Trans. Pattern Anal. 2017, 39, 640–651.##
[28] Paszke, A.; Chaurasia, A.; Kim, S.; Culurciello, E. “ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation”; arXiv preprint arXiv: 1606.02147, 2016.##
[29] Nanfack, G.; Elhassouny, E.; Thami, R. O. H. “Squeeze-SegNet: A New Fast Deep Convolutional Neural Network for Semantic Segmentation”; Tenth Int. Conf. Machine Vision, 2017.##
[30] Simonyan, K.; Zisserman, A. “Very Deep Convolutional Networks for Large-Scale Image Recognition”; arXiv Preprint arXiv: 1409.1556, 2014.##
[31] Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. “Deep Lab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs”; IEEE Trans. Pattern Anal. 2018, 40, 834-848.##
[32] Noh, H.; Hong, S.; Han, B. “Learning Deconvolution Network for Semantic Segmentation”; IEEE Int. Conf. Comput. Vision 2015, 1520-1528.##
[33] Tighe, J.; Lazebnik, S. “Super Parsing: Scalable Nonparametric Image Parsing with Super Pixels”; European Conference on Computer Vision 2010, 352-365.##
[34] Hu, Y.; Song, R.; Li., Y. “Efficient Coarse-to-fine Patch Match for Large Displacement Optical Flow”; IEEE Conf. Comput. Vision Pattern Recgn. 2016, 5704-5712.##
[35] Hu, Y.; Li, Y.; Song, R. “Robust Interpolation of Correspondences for Large Displacement Optical Flow”; IEEE Conf. Comput. Vision Pattern Recgn. 2017, 4791–4799.##
[36] Maurer, D.; Stoll, M.; Bruhn, A. “Order-Adaptive and Illumination-Aware Variational Optical Flow Refinement”; Proc. of the British Machine Vision Conference 2017.##
[37] Maurer, D.; Bruhn, A. “ProFlow: Learning to Predict Optical Flow”; arXiv preprint arXiv:1806.00800. 2018.##
[38] Hur, J.; Roth, S. “Mirror Flow: Exploiting Symmetries in Joint Optical Flow and Occlusion Estimation”; IEEE Conf. Comput. Vision Pattern Recgn. 2017, 312-321.##
[39] Meister, S.; Hur, J.; Roth, S. “Unflow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss”; Proc. AAAI Conf. Artificial Intelligence 2018.##