تحلیل ضربه عمودی در سازه ساندویچی با درنظرگرفتن مکانیزم‌های مختلف جذب انرژی

نویسندگان

1 دانشگاه آزاد اسلامی همدان

2 دانشگاه رازی

3 دانشگاه تهران

چکیده

هدف این مقاله ارائه روش تحلیلی جدیدی برای محاسبه میزان جذب انرژی ورق­های ساندویچی آلومینیوم- فوم تحت اثر ضربه سرعت ‌بالا است. ورق­های ساندویچی آلومینیوم- فوم دارای هسته از جنس فوم هستند که بین دو صفحه فلزی آلومینیومی، محصور شده است.        ضربه­زننده به‌صورت پرتابه صلب استوانه­ای سر تخت در نظر گرفته شده است. با استفاده از مدل جرم و فنر، جذب انرژی لایه­های آلومینیومی در بارگذاری شبه ­استاتیکی و با در نظر گرفتن مکانیزم­های مختلف جذب انرژی محاسبه شده است. همچنین فوم نیز به­واسطه خردشدن بخشی از انرژی پرتابه را جذب می­کند. نهایتاً جذب انرژی توسط ورق­های ساندویچی آلومینیوم- فوم محاسبه و با استفاده از موازنه انرژی، سرعت حد بالستیک و سرعت باقیمانده پرتابه محاسبه شده است. مقادیر سرعت حد بالستیک و سرعت باقی­مانده محاسبه‌شده با روش تحلیلی هم‌خوانی مناسبی با مقادیر تجربی و عددی دارد. همچنین اثرات چگالی فوم، جرم و قطر پرتابه در میزان جذب انرژی ساندویچ پانل بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis of Normal Impact on Sandwich Panel with Considering Difference Energy Absorption Mechanisms

نویسندگان [English]

  • seyed sajad jafari 1
  • saeid feli 2
  • milad ranjbaran 3
1
2
3
چکیده [English]

In this paper, a new analytical model has been presented for energy absorption calculation of aluminum-foam sandwich panels under high velocity impact. The panels consist of foam core sandwiched between two aluminum skins. In analytical model, cylindrical rigid projectile with flat ended has been considered. In the quasi-static loading, by using the springs-mass model, energy absorption of aluminum skins with considering difference energy absorption mechanisms has been calculated. Also foam absorbed a partial of projectile energy by crushing. Energy absorption of aluminum-foam sandwich panel was calculated and energy balancing equation has been employed for determination the ballistic limit and residual velocity of projectiles. The results of ballistic limit and residual velocity computed by new model presented good agreement with experimental and numerical results. Also the effects of foam density, projectile mass and diameter in energy absorption of sandwich panel has been investigated.

کلیدواژه‌ها [English]

  • Sandwich Panel
  • Foam
  • Aluminum
  • Perforation
  • Energy Absorption
[1]     Backman, M. E.; Goldsmith, W. “The Mechanics of Penetration of Projectiles into Targets”; Int. J. Eng. Sci. 1978, 16, 1-99.##
[2]     Corbett, G. G.; Reid, S. R.; Johnson, W. “Impact Loading of Plates and Shells by Free-flying Projectiles: A Review”; Int. J. Imp. Eng. 1996, 18, 141-230.##
[3]     Forrestal, M. J.; Okajima, K.; Luk, V. K. “Penetration of 6061-T651 Aluminum Targets with Rigid Long Rods”; Appl. Mech. 1988, 55, 755-760.##
[4]     Forrestal, M. J.; Luk, V. K.; Brar, N. S. “Perforation of Aluminum Armor Plates with Conical-Nose Projectiles”; Mech. Mat. 1990, 10, 97-105.##
[5]     Forrestal, M. J.; Tzou, D. Y.; Askari, E.; Longcope, D. B. “Penetration into Ductile Metal Targets with Rigid Spherical-nose Rods”; Int. J. Imp. Eng. 1995, 16, 699-710.##
[6]     Ulven, C.; Vaidya, U. K.; Hosur, M. V. “Effect of Projectile Shape during Ballistic Perforation of VARTM Carbon/epoxy Composite Panels”; Compos. Str. 2003, 61, 143-150.##
[7]     Mamivand, M.; Liaghat, G. H. “A Model for Ballistic Impact on Multi-layer Fabric Targets”; Int. J. Imp. Eng. 2010, 37, 806-812.##
[8]     Pol, M.H; Liaghat, G. H.; Sedighi, M. “Analytical Modeling of Perforation of Projectiles into Glass/epoxy Composite”; Journal of Modares Mechanical Engineering; 2012, 12, 11-19 (In Persian).##
[9]     Radmehr, D.; Liaghat, G. H.; Feli, S. “Analytical Solution for Penetration of Deformable Blunt Projectiles into the Multilayer Metallic Targets”; Energetic Material 2010, 11, 21-31 (In Persian).##
[10]  Sabouri, H.; Liaghat, G. H. “Comments on the Article: Ballistic Impact of GLARE™ Fiber–Metal Laminates by Michelle, S.; Hoo, F.; Chunfu, L.; Duane, M.; Revilock, Jr. D.;  Hopkins, A. Compos. Struct. 2003, 61, 73–88”; Compos. Struct. 2010, 92, 600-601.##
[11]  Hoo Fatt, M. S.; Sirivolu, D. “A Wave Propagation Model for the High Velocity Impact Response of a Composite Sandwich Panel”; Int. J. Imp. Eng. 2010, 37, 117-130.##
[12]  Feli, S.; Namdaripour, M. H. “An Analytical Model for Composite Sandwich Panels with Honeycomb Core Subjected to High-velocity Impact”; Compos. Part B: Eng. 2012, 43, 2439-2447.##
[13]  Zhao, H.; Elnasri, I.; Girard, Y. “Perforation of Aluminum Foam Core Sandwich Panels under Impact Loading—An Experimental Study”; Int. J. Imp. Eng. 2007, 34, 1246-1257.##
[14]  Hanssen, A. G.; Girard, Y.; Olovsson, L.; Berstad, T.; Langseth, M. “A Numerical Model for Bird Strike of Aluminum Foam-based Sandwich Panels”; Int. J. Imp. Eng. 2006, 32, 1127-1144.##
[15]  Hou, W.; Zhu, F.; Lu, G.; Fang, D. “Ballistic Impact Experiments of Metallic Sandwich Panels with Aluminum Foam Core”; Int. J. Imp. Eng. 2010, 37, 1045-1055.##
[16]  Ziya Shamami, M.; Khoda Rahmi, H.; Vahedi, Kh.; Pol, M. H. “Experimental and Numerical Investigation of a Blunt Rigid Projectile Penetrating into a Sandwich Panel Having Aluminum Foam Core”; Journal of Modares Mechanical Engineering 2013, 13, 1-13 (In Persian).##
[17]  Ziya Shamami, M.; Pol, M. H.; Khoda Rahmi, H. “Experimental Investigation of Ballistic Properties of Aluminum Foam Structure”; Journal of Modares Mechanical Engineering. 2013, 13, 22-27 (In Persian).##
[18]  Feli, S.; Jafari, S. S. “Analytical Investigation of Perforation of Aluminum–foam Sandwich Panels under Ballistic Impact”; Journal of Modares Mechanical Engineering. 2013, 13, 52-59 (In Persian).##
[19]  Lin, C.; Hoo Fatt, M. S. “Perforation of Composite Plates and Sandwich Panels under Quasi-Static and Projectile Loading”; J. Compos. Mat. 2006, 40, 1801-1840.##
[20]  Wen, H. M; Reddy, T. Y.; Reid, S. R.; Soden, P. D. “Indentation, Penetration and Perforation of Composite Laminate and Sandwich Panels Under Quasi-Static and Projectile Loading”; Key. Eng. Mat. 1997, 141, 501-552.##
[21]  Wu, Q. G.; Wen, H. M.; Qin, Y.; Xin, S. H. “Perforation of FRP Laminates Under Impact by Flat-Nosed Projectiles”; Compos. Part B: Eng. 2012, 43, 221-227.##
[22]  Shivakumar, K. N.; Elber, W.; IIIG, W. “Prediction of Impact Force and Duration Due to Low Velocity Impact on Circular Composite Laminates”; Appl. Mech. 1985, 52, 674-680.##
[23]  Timoshenko, S.; Woinowsky-Krieger, S.; Woinowsky, S. “Theory of Plates and Shells”; McGraw-Hill: New York, 1959.##
[24]  Lukasiewicz, S. A. “Introduction of Concentrated Loads in Plates and Shells”; Prog. Aero. Sci. 1976, 17, 109-146.##
[25]  Woodward, R. L.; De Morton, M. E. “Penetration of Targets by Flat-ended Projectiles”; Int. J. Mech. Sci. 1976, 18, 119-127.##
[26]  Hoo Fatt, M. S.; Lin, Ch.; Revilock, J. R.; Duane, M.; Hopkins, D. A. “Ballistic Impact of GLARE™ Fiber–Metal Laminates”; Compos. Struct. 2003, 61, 73-88.##
[27]  Reid, S. R.; Zhou, G., “Impact Behavior of Fiber-Reinforced Composite Materials and Structures”; CRC Press: New York, 2000.##
[28]  Forrestal, M. J.; Okajima, K.; Luk, V. K. “Penetration of 6061-T651 Aluminum Targets with Rigid Long Rods”; J. Appl. Mech. 1988, 55, 755-760.##