Investigation of the Effect of Laguerre-Gauss Laser Pulses on Charged Particle Acceleration in Wakefield

Document Type : Original Article

Authors

1 Assistant Professor, Imam Hossein (AS) University, Tehran, Iran

2 PhD student, Imam Hussein (AS) University, Tehran, Iran

3 Assistant Professor, Amirkabir University of Technology, Tehran, Iran

4 Assistant Professor, Shahid Beheshti University, Tehran, Iran

5 Assistant Professor, Imam Hussein (AS) University, Tehran, Iran

Abstract

This paper focuses on the phenomenon of wakefield acceleration using Laguerre-Gauss (LG) laser pulses. Specifically, it examines how laser pulse characteristics, such as chirp function, chirp amount, beam waist size, and pulse amplitude, affect wakefield generation and electron acceleration. The study explores the dynamics of wakefield acceleration influenced by chirped LG laser pulses and plasma. Through detailed analysis, the paper explains the mechanisms underlying this process and investigates the potential for optimizing parameters to enhance wakefield acceleration efficiency. The results of this research provide insights into the most effective configurations for achieving specific objectives in the interaction between laser pulses and plasma.

Keywords

Main Subjects


Smiley face

 

 

[1]   Petrosian,V.; Bykov, A. M. “Particle Acceleration Mechanisms”; Clusters of Galaxies: Beyond the Thermal View, J. Kaastra, Ed. New York, NY: Springer New York, 2008, 207–227, doi.org/10.1007/978-0-387-78875-3_11
[2]   Aharonian, F. A.; Akhperjanian, A. G.; Aye, K. “High-energy Particle Acceleration in the Shell of a Supernova Remnant”; Nature. 2004, 432, 75–77, doi: 10.1038/nature02960
[3]   Firouzjaei, A. S; Akou, H. “Analysis of Frequency Chirping on the Electron Bunch Acceleration During Laguerre-Gauss Laser Interaction”; J. Opt. Soc. Am. B, 2023, 40, 1953–1959, doi: 10.1364/JOSAB.487577.
[4]   Akou, H.; Firouzjaei, A. S. “Direct Electron Bunch Acceleration by Laguerre-Gauss Laser Pulse”; Phys. Plasmas 2020, 27, 93-102, doi: 10.1063/5.0015456.
[5]   Zhang, G. B.; Chen, M.; Schroeder, C. B.; Luo, J.; Zeng, M.; Li, F. Y.; Yu, L. L.; Weng, S. M.; Ma, Y. Y.; Yu, T. P.; Sheng, Z. M.; Esarey, E. “Acceleration and Evolution of a Hollow Electron Beam in Wakefields Driven by a Laguerre-Gaussian Laser Pulse”; Phys. Plasmas 2016, 23, 3, doi: 10.1063/1.4943892.
[6]   Kad, P.; Singh, A. “Electron Acceleration and Spatio-Temporal Variation of Laguerre-Gaussian Laser Pulse in Relativistic Plasma”; Eur. Phys. J. Plus, 2022, 137, 8, 885, doi: 10.1140/epjp/s13360-022-03054-2.
[7]   Wenz, J.; Karsch, S. “Physics of Laser-Wakefield Accelerators (LWFA)”; arxive/2007.04622, 2020, doi: 10.48550/arXiv.2007.04622
[8]   Krushelnick, K.; Malka, V. “Laser Wakefield Plasma Accelerators”; Laser Photonics Rev. 2010, 4, 42–52, doi: 10.1002/lpor.200810062.
[9]   Malka ,V. “Plasma Wake Accelerators: Introduction and Historical Overview”; CAS-CERN Accel. Sch. Plasma Wake Proc., 2014, 1-28, doi: 10.5170/CERN-2016-001.1.
[10] Tajima ,T.; Yan, X. Q.; Ebisuzaki, T. “Wakefield Acceleration”; 2020, 4, 1, doi: 10.1007/s41614-020-0043-z
[11] Corde, S.; Adli , E.; Allen, J. M.; An, W.; Clarke, C. I.; Clayton, C. E.; Delahaye, J. P.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Lipkowitz, N.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Schmeltz, M.; Vafaei-Najafabadi, N.; Walz, D.; Yakimenko, V.; Yocky, G. “Multi-Gigaelectronvolt Acceleration of Positrons in a Self-Loaded Plasma Wakefield”; Nature 524, 7566, 442–445, 2015, doi: 10.1038/nature14890.
[12] Muggli, P.; Hogan, M. J. “Review of High-Energy Plasma Wakefield Experiments”; Comptes Rendus Phys. 2009, 10, 2–3, 116–129. doi: 10.1016/j.crhy.2009.03.004.
[13] Assmann, R.; Bingham, R.; Bohl, T.; Bracco, C.;  Buttenschön, B.;  Butterworth, A.; Caldwell, A.; Chattopadhyay, S.; Cipiccia, S.;  Feldbaumer, E.;  Fonseca, R. A.; Goddard, B.; Gross, M.; Grulke, O.;  Gschwendtner, E.;  Holloway, J.;  Huang, C.; Jaroszynski, D.;  Jolly, S.; Kempkes, P.; Lopes,N.; Lotov, K.; Machacek, J.; Mandry, S. R..; McKenzie, J. W.; Meddahi, M.; Militsyn, B. L.; Moschuering, N.; Muggli, P.; Najmudin, Z.; Noakes, T. C. Q.; Norreys, P. A.; Öz, E.; Pardons, A.; Petrenko, A.; Pukhov, A.; Rieger, K.; Reiman, O.; Ruhl, H.;  Shaposhnikova, E.; Silva, L. O.; Sosedkin, A.; Tarkeshian, R.;  Trines,R. G. M. N.; Tückmantel, T.;  Vieira, J.; Vincke, H.; Wing, M.;Xia, G. “Proton-Driven Plasma Wakefield Acceleration: A Path to the Future of High-Energy Particle Physics”; Plasma Phys. Control. Fusion 2014, 56, 8. doi: 10.1088/0741-3335/56/8/ 084013.
[14] Yang, Y.; Li, Y.; Wang, C. “Generation and Expansion of Laguerre–Gaussian Beams”; J. Opt. 2022, 51, 910–926. doi: 10.1007/s12596-022-00857-5.
[15] Esarey, E.; Schroeder, C. B.;  Leemans, W. P. “Physics of Laser-Driven Plasma-Based Electron Accelerators”; Rev. Mod. Phys. 2009, 81, 1229–1285. doi: 10.1103/RevModPhys. 81.1229.
[16] Ghotra, H. S. “Laser Wakefield and Direct Laser Acceleration of Electron by Chirped Laser Pulses”; Optik (Stuttg) 2022, 260, 169080. doi: 10.1016/j.ijleo.2022.169080.
[17] Upadhyay, A. K.; Samant, S. A.; Krishnagopal, S. “Tailoring the Laser Pulse Shape to Improve the Quality of the Self-Injected Electron Beam in Laser Wakefield Acceleration”; Phys. Plasmas 2013, 20, 1–11. doi: 10.1063/1.4775726.
[18] Kad, P.; Singh, A. “Combined Effect of Spatio-Temporal Dynamics of Laser Pulse on Electron Acceleration in Relativistic Plasma”; IEEE Trans. Plasma Sci. 2022, 50, 1518–1523. doi: 10.1109/TPS.2021.3124548.
[19] Maslov, V.; Bondar, D.; Levchuk, L.; Onishchenko, I. “Improvement of Properties of Self-Injected and Accelerated Electron Bunch By Laser Pulse in Plasma, Using Pulse Precursor”; East Eur. J. Phys. 2019, 2, 64–68. doi: 10.26565/2312-4334-2019-2-10.
[20] Debayle, A.; Sanz, J.; Gremillet, L.; Mima, K. “Toward a Self-Consistent Model of the Interaction between an Ultra-Intense, Normally Incident Laser Pulse with an Overdense Plasma”; Phys. Plasmas 2013, 20, 5. doi: 10.1063/1.4807335.
[21] Geddes, C. G. R. “Plasma Channel Guided Laser Wakefield Accelerator”; University of California, Berkeley, 2005.
[22] Salamin, Y. I. and Keitel, C. H. “Analysis of Electron Acceleration in a Vacuum Beat Wave”; J. Phys. B At. Mol. Opt. Phys. 2000, 33, 5057–5076. doi: 10.1088/0953-4075/33/22/308.
Volume 15, Issue 1 - Serial Number 55
Spring2024
June 2025
Pages 37-44
  • Receive Date: 05 March 2024
  • Revise Date: 18 April 2024
  • Accept Date: 01 May 2024
  • Publish Date: 31 May 2024