Present and Simulation of an Efficient Scheme for Environmental Quantum Key Distribution in Optical Fiber Longer than 150 km

Document Type : Original Article

Author

Assistant Professor, Malek Ashtar University of Technology, Shahin-Shahr, Iran Malek Ashtar University of Technology, Shahin-Shahr, Iran

Abstract

The problem of achieving a higher secure key rate and a larger key distribution distance has always been the main concern of researchers in the field of quantum key distribution (QKD). Due to the loss of quantum states, there are many challenges in performing QKD in optical fiber with a secure key rate of the order of  and lengths higher than 50 . This paper presents the design and simulation of an efficient QKD system using all-fiber components, which has the capability of QKD at a reasonable rate up to a distance of 170 . This design enables QKD in 100  long single-mode optical fiber, with a quantum bit error rate (QBER) below 3%, a sifted key rate of 6 , and a secure key rate of 4.6 . All the designs and simulations have been done considering the experimental limitations and using physical parameters in harmony with the available tools, so that in case of possible implementation of the system, the results of these simulations are quite close to the experimental data. The development of this scheme can be a suitable candidate for achieving native commercial and industrial QKD systems.

Keywords

Main Subjects


Smiley face

 

   [1]      Security of Practical Quantum Key Distribution”; Eur. Phys. J. D. 2007, 41, 599–627. doi: 10.1140/epjd/e2007-00010-4.
   [2]      Sun, S.; Huang, A. “A Review of Security Evaluation of Practical Quantum Key Distribution System”; Entropy , 2022, 24, 260. doi: 10.3390/e24020260.
   [3]      Portmann, C.; Renner, R. “Security in Quantum Cryptography”; Rev. Mod. Phys. 2022, 94, 025008. doi: 10.1103/revmodphys.94.025008.
   [4]      Li, Z.; Wei, K. “Improving Parameter Optimization in Decoy-State Quantum Key Distribution”; Quantum Eng. 2022, 1, 9717591. doi: 10.1155/2022/9717591.
   [5]      Li, W.; Zhang, L.; Tan, H.; Lu, Y.; Liao, S.-K.; Huang, J.; Li, H. “High-Rate Quantum Key Distribution Exceeding 110 Mb s–1”; Nat. Photonics, 2023, 17, 416–421. doi: 10.1038/s41566-023-01166-4.
   [6]      Zhang, C.-X.; Wu, D.; Cui, P.-W.; Ma, J.-C.; Wang, Y.; An, J.-M. “Research Progress in Quantum Key Distribution”; Chin. Phys. B. 2023, 32, 124207. doi: 10.1088/1674-1056/acfd16.
   [7]      Yang, Z.; Zolanvari, M.; Jain, R. “A Survey of Important Issues in Quantum Computing and Communications”; IEEE Communications Surveys & Tutorials, 2023, 25, 1059–1094. doi: 10.1109/comst.2023.3254481.
   [9]      Guarda, G.; Ribezzo, D.; Salvoni, D.; Bruscino, C.; Ercolano, P.; Ejrnaes, M.; Parlato, L. “Decoy-State Quantum Key Distribution Over Long-Distance Optical Fiber”; Quantum Computing, Communication, and Simulation IV, 2024, 12911, 120-125. doi: 10.1117/12.3003698.
[10]      Zapatero, V.; Leent, T. v.; Arnon-Friedman, R.; Liu, W.-Z.; Zhang, Q.; Weinfurter, H.; Curty, M. “Advances in Device-Independent Quantum Key Distribution”; npj Quantum Inf. 2023, 9, 10. doi: 10.1038/s41534-023-00684-x.
[11]      Liu, Y.; Zhang, W.-J.; Jiang, C.; Chen, J.-P.; Zhang, C.; Pan, W.-X.; Ma, D. “Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber Distance”; Phys. Rev. Lett. 2023, 130, 210801. doi: 10.1103/physrevlett.130.210801.
[12]      Liu, Q.; Huang, Y.; Du, Y.; Zhao, Z.; Geng, M.; Zhang, Z.; Wei, K. “Advances in Chip-Based Quantum Key Distribution”; Entropy, 2022, 24, 1334. doi: 10.3390/e24101334.
[13]       Jain, N.; Chin, H.-M.; Mani, H.; Lupo, C.; Nikolic, D. S.; Kordts, A.; Pirandola, S. “Practical Continuous-Variable Quantum Key Distribution with Composable Security”; Nat. Commun. 2022, 13, 4740. doi: 10.1038/s41467-022-32161-y.
[14]      Zahidy, M.; Ribezzo, D.; De Lazzari, C.; Vagniluca, I.; Biagi, N.; Müller, R.; Occhipinti, T. “Practical High-Dimensional Quantum Key Distribution Protocol Over Deployed Multicore Fiber”; Nat. Commun. 2024, 15, 1651. doi: 10.1038/s41467-024-45876-x.
[15]      Sun, Z.; Li, Y.; Ma, H. “Experimental High-Dimensional Quantum Key Distribution with Orbital Angular Momentum”; J. Opt. Soc. Am. B. 2024, 41, 351. doi: 10.1364/josab.507195.
[16]      Mehri Toonabi, A.; Davoudi Darareh, M.; Janbaz, S. “High-Dimensional Quantum Key Distribution Using Polarization-Phase Encoding: Security Analysis”; Int. J. Quantum Inf. 2020, 18, 2050031. doi: 10.1142/s0219749920500318.
[17]      Morrison, C. L.; Pousa, R. G.;  Graffitti, F.; Koong, Z. X.; Barrow, P.; Stoltz, N. G.; Bouwmeester, D. “Single-Emitter Quantum Key Distribution Over 175 km of Fibre with Optimised Finite Key Rates”; Nat. Commun. 2023, 14, 3573. doi: 10.1038/s41467-023-39219-5.
[18]      Jiang, S.; Safari, M. “High-Speed Quantum Key Distribution Using Dead-Time Compensated Detector Arrays”; J. Lightwave Technol. 2024, 1–13. doi: 10.1109/jlt.2024.3363145.
[19]      Liu, R.; Rozenman, G. G.; Kundu, N. K.; Chandra, D.; De, D. “Towards the Industrialisation of Quantum Key Distribution in Communication Networks: A Short Survey”; IET Quantum Commun. 2022, 3, 151–163. doi: 10.1049/qtc2.12044.
[21]      Hassan, M. M.; Reaz, K.; Green, A.; Crum, N.; Siopsis, G. “Experimental Free-Space Quantum Key Distribution Over a Turbulent High-Loss Channel”; 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). 2023, 1, 1182-1186. doi: 10.1109/qce57702.2023.00133.
[22]      Li, Y.-H.; Li, S.-L.; Hu, X.-L.; Jiang, C.; Yu, Z.-W.; Li, W.; Liu, W.-Y. “Free-Space and Fiber-Integrated Measurement-Device-Independent Quantum Key Distribution under High Background Noise”; Phys. Rev. Lett. 2023, 131, 100802. doi: 10.1103/physrevlett.131.100802.
[23]      Fox, M. “Quantum Optics”; 2006, 15, doi: 10.1093/oso/9780198566724.001.0001.
[24]      Townsend, P. D.; Rarity, J. G.; Tapster, P. R. “Single Photon Interference in 10 km Long Optical Fibre Interferometer”; Electron. Lett. 1993, 29, 634. doi: 10.1049/el19930424.
[25]      Mehri Toonabi, A.; Davoudi Darareh, M.; Janbaz, S. “A two-Dimensional Quantum Key Distribution Protocol Based on Polarization-Phase Encoding”; Int. J. Quantum Inf. 2019, 17, 1950058. doi: 10.1142/s0219749919500588.
[26]      Waks, E.; Santori, C.; Yamamoto, Y. “Security Aspects of Quantum Key Distribution with Sub-Poisson Light”; Phys. Rev. A. 2002, 66, 042315. doi: 10.1103/physreva.66.042315.
[27]      Zbinden, H.; Bechmann-Pasquinucci, H.; Gisin, N.; Ribordy, G. “Quantum Cryptography”; Appl. Phys. B: Lasers Opt. 1998, 67, 743–748. doi: 10.1007/s003400050574.
[28]      Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. “Quantum Cryptography”; Rev. Mod. Phys. 2002, 74, 145–195. doi: 10.1103/revmodphys.74.145.
[29]      Gobby, C.; Yuan, Z. L.; Shields, A. J. “Quantum Key Distribution Over 122 km of Standard Telecom Fiber”; Appl. Phys. Lett. 2004, 84, 3762–3764. doi: 10.1063/1.1738173.
[30]      Zhao, Y.; Qi, B.; Ma, X.; Lo, H.-K.; Qian, L. “Experimental Quantum Key Distribution with Decoy States,”; Phys. Rev. Lett. 2006, 96, 070502. doi: 10.1103/physrevlett.96.070502.
[31]      Peng, C. Z.; Zhang, J.; Yang, D.; Gao, W. B.; Ma, H. X.; Yin, H.; Zeng, H. P.; Yang, T.; Wang, X. B.; Pan, J. W. “Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding,”; Phys. Rev. Lett. 2007, 98, 010505. doi: 10.1103/physrevlett.98.010505.
[32]      Rosenberg, D.; Harrington, J. W.; Rice, P. R.; Hiskett, P. A.; Peterson, C. G.; Hughes, R. J.; Lita, A. E.; Nam, S. W.; Nordholt, J. E. “Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber,”; Phys. Rev. Lett. 2007, 98, 010503. doi: 10.1103/physrevlett.98.010503.
[33]      Dixon, A. R.; Yuan, Z. L.; Dynes, J. F.; Sharpe, A. W.; Shields, A. J. “Gigahertz Decoy Quantum Key Distribution With 1 Mbit/sS Secure Key Rate,”; Opt. Express, 2008, 16, 18790. doi: 10.1364/oe.16.018790.
[34]      Liu, Y.; Chen, T. Y.; Wang, J.; Cai, W. Q.; Wan, X.; Chen, L. K.; Wang, J. H.; Liu, S. B.; Liang, H.; Yang, L.; Peng, C. Z. “Decoy-State Quantum Key Distribution wWith Polarized Photons Over 200 km,”; Opt. Express, 2010, 18, 8587-8594. doi: 10.1364/oe.18.008587.
[35]      Lucamarini, M.; Patel, K. A.; Dynes, J. F.; Fröhlich, B.; Sharpe, A. W.; Dixon, A. R.; Yuan, Z. L.; Penty, R. V.; Shields, A. J. “Efficient Decoy-State Quantum Key Distribution wWith Quantified Security,” Opt. Express , 2013, 21, 24550-24565. doi: 10.1364/oe.21.024550.
[36]      Fröhlich, B.; Lucamarini, M.; Dynes, J. F.; Comandar, L. C.; Tam, W. W. S.; Plews, A.; Sharpe, A. W.; Yuan, Z.; Shields, A. J. “Long-Distance Quantum Key Distribution Secure Against Coherent Aattacks,” Optica, 2017, 4, 163-167. doi: 10.1364/optica.4.000163.
[37]      Geng, W.; Zhang, C.; Zheng, Y.; He, J.; Zhou, C.; Kong, Y. “Stable Quantum Key Distribution Using aA Silicon Photonic Transceiver,” Opt. Express, 2019, 27, 29045. doi: 10.1364/oe.27.029045.
[38]      Shaw, G. K.; Sridharan, S.; Prabhakar, A. “Optimal temporal filtering for COW-QKD,” 2022 IEEE International Conference on Signal Processing and Communications (SPCOM), 2022, 1-4. doi: 10.1109/spcom55316.2022.9840768.
[39]      Malpani, P.; Kumar, S.; Pathak, A. “Implementation of Coherent One Way Protocol fFor Quantum Key Distribution UUp tTo aAn Effective Distance of 145 km,” Opt. Quantum Electron. 2024, 56, 1369. doi: 10.1007/s11082-024-06934-2.