[1] Security of Practical Quantum Key Distribution”; Eur. Phys. J. D. 2007, 41, 599–627. doi: 10.1140/epjd/e2007-00010-4.
[2] Sun, S.; Huang, A. “A Review of Security Evaluation of Practical Quantum Key Distribution System”; Entropy , 2022, 24, 260. doi: 10.3390/e24020260.
[3] Portmann, C.; Renner, R. “Security in Quantum Cryptography”; Rev. Mod. Phys. 2022, 94, 025008. doi: 10.1103/revmodphys.94.025008.
[4] Li, Z.; Wei, K. “Improving Parameter Optimization in Decoy-State Quantum Key Distribution”; Quantum Eng. 2022, 1, 9717591. doi: 10.1155/2022/9717591.
[5] Li, W.; Zhang, L.; Tan, H.; Lu, Y.; Liao, S.-K.; Huang, J.; Li, H. “High-Rate Quantum Key Distribution Exceeding 110 Mb s–1”; Nat. Photonics, 2023, 17, 416–421. doi: 10.1038/s41566-023-01166-4.
[6] Zhang, C.-X.; Wu, D.; Cui, P.-W.; Ma, J.-C.; Wang, Y.; An, J.-M. “Research Progress in Quantum Key Distribution”; Chin. Phys. B. 2023, 32, 124207. doi: 10.1088/1674-1056/acfd16.
[7] Yang, Z.; Zolanvari, M.; Jain, R. “A Survey of Important Issues in Quantum Computing and Communications”; IEEE Communications Surveys & Tutorials, 2023, 25, 1059–1094. doi: 10.1109/comst.2023.3254481.
[9] Guarda, G.; Ribezzo, D.; Salvoni, D.; Bruscino, C.; Ercolano, P.; Ejrnaes, M.; Parlato, L. “Decoy-State Quantum Key Distribution Over Long-Distance Optical Fiber”; Quantum Computing, Communication, and Simulation IV, 2024, 12911, 120-125. doi: 10.1117/12.3003698.
[10] Zapatero, V.; Leent, T. v.; Arnon-Friedman, R.; Liu, W.-Z.; Zhang, Q.; Weinfurter, H.; Curty, M. “Advances in Device-Independent Quantum Key Distribution”; npj Quantum Inf. 2023, 9, 10. doi: 10.1038/s41534-023-00684-x.
[11] Liu, Y.; Zhang, W.-J.; Jiang, C.; Chen, J.-P.; Zhang, C.; Pan, W.-X.; Ma, D. “Experimental Twin-Field Quantum Key Distribution Over 1000 km Fiber Distance”; Phys. Rev. Lett. 2023, 130, 210801. doi: 10.1103/physrevlett.130.210801.
[12] Liu, Q.; Huang, Y.; Du, Y.; Zhao, Z.; Geng, M.; Zhang, Z.; Wei, K. “Advances in Chip-Based Quantum Key Distribution”; Entropy, 2022, 24, 1334. doi: 10.3390/e24101334.
[13] Jain, N.; Chin, H.-M.; Mani, H.; Lupo, C.; Nikolic, D. S.; Kordts, A.; Pirandola, S. “Practical Continuous-Variable Quantum Key Distribution with Composable Security”; Nat. Commun. 2022, 13, 4740. doi: 10.1038/s41467-022-32161-y.
[14] Zahidy, M.; Ribezzo, D.; De Lazzari, C.; Vagniluca, I.; Biagi, N.; Müller, R.; Occhipinti, T. “Practical High-Dimensional Quantum Key Distribution Protocol Over Deployed Multicore Fiber”; Nat. Commun. 2024, 15, 1651. doi: 10.1038/s41467-024-45876-x.
[15] Sun, Z.; Li, Y.; Ma, H. “Experimental High-Dimensional Quantum Key Distribution with Orbital Angular Momentum”; J. Opt. Soc. Am. B. 2024, 41, 351. doi: 10.1364/josab.507195.
[16] Mehri Toonabi, A.; Davoudi Darareh, M.; Janbaz, S. “High-Dimensional Quantum Key Distribution Using Polarization-Phase Encoding: Security Analysis”; Int. J. Quantum Inf. 2020, 18, 2050031. doi: 10.1142/s0219749920500318.
[17] Morrison, C. L.; Pousa, R. G.; Graffitti, F.; Koong, Z. X.; Barrow, P.; Stoltz, N. G.; Bouwmeester, D. “Single-Emitter Quantum Key Distribution Over 175 km of Fibre with Optimised Finite Key Rates”; Nat. Commun. 2023, 14, 3573. doi: 10.1038/s41467-023-39219-5.
[18] Jiang, S.; Safari, M. “High-Speed Quantum Key Distribution Using Dead-Time Compensated Detector Arrays”; J. Lightwave Technol. 2024, 1–13. doi: 10.1109/jlt.2024.3363145.
[19] Liu, R.; Rozenman, G. G.; Kundu, N. K.; Chandra, D.; De, D. “Towards the Industrialisation of Quantum Key Distribution in Communication Networks: A Short Survey”; IET Quantum Commun. 2022, 3, 151–163. doi: 10.1049/qtc2.12044.
[21] Hassan, M. M.; Reaz, K.; Green, A.; Crum, N.; Siopsis, G. “Experimental Free-Space Quantum Key Distribution Over a Turbulent High-Loss Channel”; 2023 IEEE International Conference on Quantum Computing and Engineering (QCE). 2023, 1, 1182-1186. doi: 10.1109/qce57702.2023.00133.
[22] Li, Y.-H.; Li, S.-L.; Hu, X.-L.; Jiang, C.; Yu, Z.-W.; Li, W.; Liu, W.-Y. “Free-Space and Fiber-Integrated Measurement-Device-Independent Quantum Key Distribution under High Background Noise”; Phys. Rev. Lett. 2023, 131, 100802. doi: 10.1103/physrevlett.131.100802.
[23] Fox, M. “Quantum Optics”; 2006, 15, doi: 10.1093/oso/9780198566724.001.0001.
[24] Townsend, P. D.; Rarity, J. G.; Tapster, P. R. “Single Photon Interference in 10 km Long Optical Fibre Interferometer”; Electron. Lett. 1993, 29, 634. doi: 10.1049/el19930424.
[25] Mehri Toonabi, A.; Davoudi Darareh, M.; Janbaz, S. “A two-Dimensional Quantum Key Distribution Protocol Based on Polarization-Phase Encoding”; Int. J. Quantum Inf. 2019, 17, 1950058. doi: 10.1142/s0219749919500588.
[26] Waks, E.; Santori, C.; Yamamoto, Y. “Security Aspects of Quantum Key Distribution with Sub-Poisson Light”; Phys. Rev. A. 2002, 66, 042315. doi: 10.1103/physreva.66.042315.
[27] Zbinden, H.; Bechmann-Pasquinucci, H.; Gisin, N.; Ribordy, G. “Quantum Cryptography”; Appl. Phys. B: Lasers Opt. 1998, 67, 743–748. doi: 10.1007/s003400050574.
[28] Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. “Quantum Cryptography”; Rev. Mod. Phys. 2002, 74, 145–195. doi: 10.1103/revmodphys.74.145.
[29] Gobby, C.; Yuan, Z. L.; Shields, A. J. “Quantum Key Distribution Over 122 km of Standard Telecom Fiber”; Appl. Phys. Lett. 2004, 84, 3762–3764. doi: 10.1063/1.1738173.
[30] Zhao, Y.; Qi, B.; Ma, X.; Lo, H.-K.; Qian, L. “Experimental Quantum Key Distribution with Decoy States,”; Phys. Rev. Lett. 2006, 96, 070502. doi: 10.1103/physrevlett.96.070502.
[31] Peng, C. Z.; Zhang, J.; Yang, D.; Gao, W. B.; Ma, H. X.; Yin, H.; Zeng, H. P.; Yang, T.; Wang, X. B.; Pan, J. W. “Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding,”; Phys. Rev. Lett. 2007, 98, 010505. doi: 10.1103/physrevlett.98.010505.
[32] Rosenberg, D.; Harrington, J. W.; Rice, P. R.; Hiskett, P. A.; Peterson, C. G.; Hughes, R. J.; Lita, A. E.; Nam, S. W.; Nordholt, J. E. “Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber,”; Phys. Rev. Lett. 2007, 98, 010503. doi: 10.1103/physrevlett.98.010503.
[33] Dixon, A. R.; Yuan, Z. L.; Dynes, J. F.; Sharpe, A. W.; Shields, A. J. “Gigahertz Decoy Quantum Key Distribution With 1 Mbit/sS Secure Key Rate,”; Opt. Express, 2008, 16, 18790. doi: 10.1364/oe.16.018790.
[34] Liu, Y.; Chen, T. Y.; Wang, J.; Cai, W. Q.; Wan, X.; Chen, L. K.; Wang, J. H.; Liu, S. B.; Liang, H.; Yang, L.; Peng, C. Z. “Decoy-State Quantum Key Distribution wWith Polarized Photons Over 200 km,”; Opt. Express, 2010, 18, 8587-8594. doi: 10.1364/oe.18.008587.
[35] Lucamarini, M.; Patel, K. A.; Dynes, J. F.; Fröhlich, B.; Sharpe, A. W.; Dixon, A. R.; Yuan, Z. L.; Penty, R. V.; Shields, A. J. “Efficient Decoy-State Quantum Key Distribution wWith Quantified Security,” Opt. Express , 2013, 21, 24550-24565. doi: 10.1364/oe.21.024550.
[36] Fröhlich, B.; Lucamarini, M.; Dynes, J. F.; Comandar, L. C.; Tam, W. W. S.; Plews, A.; Sharpe, A. W.; Yuan, Z.; Shields, A. J. “Long-Distance Quantum Key Distribution Secure Against Coherent Aattacks,” Optica, 2017, 4, 163-167. doi: 10.1364/optica.4.000163.
[37] Geng, W.; Zhang, C.; Zheng, Y.; He, J.; Zhou, C.; Kong, Y. “Stable Quantum Key Distribution Using aA Silicon Photonic Transceiver,” Opt. Express, 2019, 27, 29045. doi: 10.1364/oe.27.029045.
[38] Shaw, G. K.; Sridharan, S.; Prabhakar, A. “Optimal temporal filtering for COW-QKD,” 2022 IEEE International Conference on Signal Processing and Communications (SPCOM), 2022, 1-4. doi: 10.1109/spcom55316.2022.9840768.
[39] Malpani, P.; Kumar, S.; Pathak, A. “Implementation of Coherent One Way Protocol fFor Quantum Key Distribution UUp tTo aAn Effective Distance of 145 km,” Opt. Quantum Electron. 2024, 56, 1369. doi: 10.1007/s11082-024-06934-2.