[1] Ali, S.; Abdullah, A.; Athar, A.; Ali, M.; Hussain, A.; Kim, H.-C. “Computer Vision-Based Military Tank Recognition Using Object Detection Technique: An Application of the YOLO Framework”;International Conference on Advanced Innovations in Smart Cities (ICAISC), 2023,DOI:10.1109/icaisc56366.2023.10085552.
[2] Jang, J.; Lee, H.; Kim, J.-C. “CarFree: Hassle-Free Object Detection Dataset Generation Using Carla Autonomous Driving Simulator”; Applied Sciences, 2021, DOI:10.3390/app12010281.
[3] Man, K.; Chahl, J. “A Review of Synthetic Image Data and Its Use in Computer Vision”; Journal of Imaging, 2022, DOI:10.3390/jimaging8110310.
[4] Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. “Object Detection in 20 Years: A Survey”; Proceedings of the IEEE, 2023, DOI:10.1109/jproc.2023.3238524.
[5] Rasmussen, I.; Kvalsvik, S.; Andersen, P.-A.; Aune, T. N.; Hagen, D. “Development of a Novel Object Detection System Based on Synthetic Data Generated from Unreal Game Engine”; Applied Sciences, 2022, DOI:10.3390/app12178534.
[6] Jaipuria, N.; et al. “Deflating Dataset Bias Using Synthetic Data Augmentation”; IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020, DOI:10.1109/cvprw50498.2020.00394.
[7] Aljundi, R.; Tuytelaars, T. “Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction”; Computer Vision – ECCV 2016 Workshops, 2016, DOI:10.1007/978-3-319-49409-8_43.
[8] Tsirikoglou, A.; Eilertsen, G.; Unger, J. “A Survey of Image Synthesis Methods for Visual Machine Learning”; Computer Graphics Forum, 2020, DOI:10.1111/cgf.14047.
[10] Farajollahi, A.; Rostami, M.; Parvin, H.; Nazarpour, B.; Lak, M. “Face Detection and Identification in Drones with Deep Learning”; Journal of Advanced Defense Science & Technology, 2022.
[11] Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. “You Only Look Once: Unified, Real-Time Object Detection”; 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, DOI:10.1109/cvpr.2016.91.
[12] Sarda, A.; Dixit, S.; Bhan, A. “Object Detection for Autonomous Driving Using YOLO Algorithm”; International Conference on Intelligent Engineering and Management (ICIEM), 2021, DOI:10.1109/iciem51511.2021.9445365.
[13] Redmon, J.; Farhadi, A. “YOLO9000: Better, Faster, Stronger”; 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, DOI:10.1109/cvpr.2017.690.
[14] Liu, Z.; Chen, Z.; Li, Z.; Hu, W. “An Efficient Pedestrian Detection Method Based on YOLOv2”; Mathematical Problems in Engineering, 2018, DOI:10.1155/2018/3518959.
[15] Kivrak, O.; Gürbüz, M. Z. “Performance Comparison of YOLOv3, YOLOv4, and YOLOv5 Algorithms: A Case Study for Livestock Recognition”; European Journal of Science and Technology, 2022, DOI:10.31590/ejosat.1111288.
[16] Francies, M. L.; Ata, M. M.; Mohamed, M. A. “A Robust Multiclass 3D Object Recognition Based on Modern YOLO Deep Learning Algorithms”; Concurrency and Computation: Practice and Experience, 2021, DOI:10.1002/cpe.6517.
[17] Yao, G.; Sun, Y.; Wong, M.; Lv, X. “A Real-Time Detection Method for Concrete Surface Cracks Based on Improved YOLOv4”; Symmetry, 2021, DOI:10.3390/sym13091716.
[19] Qian, S.; Dai, S. “Identification of High-Speed Railway Trackside Equipments Based on YOLOv4”; China Automation Congress (CAC), 2022, DOI:10.1109/cac57257.2022.10055473.
[20] https://github.com/ultralytics/yolov5, Nov 2022.
[21] https://github.com/open-mmlab/mmyolo/tree/ma, Aug 2023.
[22] Shorten, C.; Khoshgoftaar, T. M. “A Survey on Image Data Augmentation for Deep Learning”; Journal of Big Data, 2019, DOI:10.1186/s40537-019-0197-0.
[23] Freedman, E. “Game Engine Culture”; The Persistence of Code in Game Engine Culture, 2020, DOI:10.4324/9780429434242-1.