Investigating the Laser Performance of Liquid Gain Medium Containing Derivatives of Neodymium Ions

Document Type : -

Authors

1 PhD, Imam Hussein (AS) University, Tehran, Iran

2 Associate Professor, Imam Hossein (AS) University, Tehran, Iran

3 Associate Professor, Imam Hossein University, Tehran, Iran

4 Assistant Professor, Imam Hossein University, Tehran, Iran

5 PhD student, Imam Hossein (AS) University, Tehran, Iran

6 Master's degree, Imam Hossein University, Tehran, Iran

Abstract

Liquid laser gain medium containing neodymium ion derivatives can be a candidate to replace solid-state materials in order to solve the thermal lensing problems of high-power lasers, which has attracted the attention of researchers in this field. This article reports the production, thermal and spectral analysis of two samples of liquid laser gain medium containing 0.3 M Nd3+ salt in deuterium dimethyl sulfoxide (organic solvent) and phosphorus oxychloride (inorganic solvent). Spectral investigation of these active materials shows a decrease in fluorescence intensity in the Nd(TFA)3-DMSO-d6 sample compared to the Nd3+-POCl3-SnCl4 sample. Despite the low fluorescence intensity in the organic solvent versus the inorganic solvent, this sample receives more attention due to the significant reduction of the effects of toxicity and corrosiveness. The results show that the liquid laser gain medium containing neodymium ion derivatives has solved the thermal problems due to better heat transfer. Still, with a minimal gain coefficient of 0.001 cm-1, it isn't easy to create laser oscillation and the output efficiency reduces.

Keywords

Main Subjects


Smiley face

 

   [1]      Inguscio, M.; Wallenstein, R. “Solid State Lasers: New Developments and Applications”; Springer Science & Business Media: 2012.
   [2]      Siegman, A. E. “Lasers”; University Science Books: 1986.
   [3]      Koechner, W. “Solid-State Laser Engineering”; Springer: 2013.
   [4]      Burdukova, O. A.;  Konyshkin, V. A.;  Petukhov, V. A.;  Senatsky, Y. V.; Zverev, P. G. “Laser With The Slurry Active Medium”; Laser Physics Letters 2018, 15, 095805. DOI:10.1088/1612-202X/aad1ba
   [5]      Brinkschulte, H.;  Perchermeier, J.; Schimitschek, E. “A Repetitively Pulsed, Q-Switched, Inorganic Liquid Laser”; Applied Physics 1974, 7, 1361. DOI:10.1088/0022-3727/7/10/309.
   [6]      Brecher, C.; French, K. W., “Comparison of aprotic solvents for neodymium (III) ion liquid laser systems: selenium oxychloride and phosphorus oxychloride”; J. Phys. Chem. 1969, 73, 1785-1789. 
   [7]      Heller, A. “A High-Gain Room-Temperature Liquid Laser:Trivalent Neodymium in Selenium Oxychloride”; Appl. Phys. Let. 1966, 9, 106-108. 
   [8]      Tzuk, Y.;  Goren, C.;  Raanan, D.; Strum, G. “Nanoparticle Dispersion Laser”; Optics Letters. 2012, 37, 939-941. DOI:10.1364/OL.37.000939
   [9]      zuk, Y.;  Goren, C.;  Sturm, G.;  Greenblatt, J.; Raanan, D. “Flashlamp-Pumped Nanoparticle Dispersion Laser”; Appl. Optics 2015, 54. DOI:10.1364/AO.54.001157
[10]      She, J.; Nie, R.;  Sun, X.; Peng, B. "Crystal Structure and Optical Properties of a Nneodymium Trifluoroacetate Complex for Liquid Laser"; Second International Conference on Photonics and Optical Engineering, SPIE: 2017, 973-978.
[11]      Redington, R. L.; Lin, K. C. “Infrared Spectra of Trifluoroacetic Acid and Trifluoroacetic Anhydride”; Spectrochimica Acta Part A: Molecular Spectroscopy. 1971, 27, 2445-2460. DOI: 10.1016/0584-8539(71)80143-5
[12]      Rongbiao, Y.; Kehan, Y.; Xu, X. X.; Qiu, X. M.; Liu, S.;  Huang, W.; Tang, G.; Ford, H.; Peng, B. “Nd2O3 Nanoparticles Modified with a SilaneCoupling Agent as a Liquid Laser Medium”; Adv. Mater. 2007, 19, 838-842. DOI:10.1002/adma.200600936.
[13]      Varshney, A. K.;  Kumar, S.;  Kumar, A.;  Singhal, G.;  Gupta, M.; Prakash, G. “Optical and Thermal Studies of Nd3+ Doped Inorganic Liquid Medium for Scalable Laser Source”; Optics Laser Technology. 2022, 148, 107740. DOI:10.1016/j.optlastec.2021.107740.
[14]      https://webbook.nist.gov/cgi/cbook.cgi?ID=C76051&Mask=80.
[15]      Hou, C.;  Guo, H.;  She, J.;  Cui, X.;  Qiao, Z.;  Gao, F.;  Lu, M.;  Wei, W.; Peng, B. “A Neodymium Fluid Laser: Laser Emission in Circulating State”; J. Optics Laser Technol. 2012, 44, 1633-1635. DOI:10.1016/j.optlastec.2011.12.047
[16]      Frantz, L. M.; Nodvik, J. “Theory of Pulse Propagation in a Laser Amplifier”; applied Physics B. 1963, 34, 2346-2349. DOI:10.1063/1.1702744
[17]      Pourhashemi, S. A.; Parvin, P.; Khalilzade, J. “Measurement of Gain-Saturation Properties of a Q-Switched Nd:YAG Laser Oscillator With a Three-Pass Amplifier and Corresponding Beam Diagnosis“; Optik 2023, 282, 170883. DOI:10.1016/j.ijleo.2023.170883
[18]      Parvin, P.;  Ilchi-Ghazaani, M.;  Bananej, A.; Lali-Dastjerdi, Z. “Small Signal Gain and Saturation Intensity of a Yb: Silica Fiber MOPA System”; Optics & Laser Technol. 2009, 41, 885-891. 
[19]      Pourhashemi, S. A.;  Parvin, P.;  Khalilzadeh, J.;  Dibaei, B.; Khoei, R. “Design and Fabrication of a Nd:YAG Unstable Multi-Pass Telescopic Amplifier”; Optics Laser Technol. 2024, 168, 109851. DOI:10.1016/j.optlastec.2023.109851
[20]      Watanabe, S.;  Sato, T.; Kashiwagi, H. “Small signal gain measurement of KrF and XeF laser amplifiers”; Optics Communications 1977, 22, 143-146. 
[21]      Varshney, A. K.;  Singhal, G.; Nayak, J. “Two-Dimensional Small-Signal Gain Measurements in a Laser Diode-Pumped Flowing Nd3+: POCl3: SnCl4 Liquid Medium”; Infrared Phys. Technol. 2022, 125, 104265. DOI:10.1016/j.infrared. 2022.104265
[22]      Varshney, A. K.;  Mainuddin, M.;  Kumar, S.;  Singh, V. K.;  Kumar, V.;  Verma, A. C.;  Kumar, A.; Singhal, G., “Laser Diode Array Pumped Circulating Nd3+:POCl3:SnCl4 Liquid Laser”; Optics Laser Technol. 2023, 167, 109811.  
 
Volume 14, Issue 4 - Serial Number 54
January 2024
Pages 247-252
  • Receive Date: 13 November 2023
  • Revise Date: 18 December 2024
  • Accept Date: 04 January 2024
  • Publish Date: 21 January 2024