[1] Asadi, M.; BagherI, Z. “Detection of Denial of Service Attacks by Ensemble Learning Method”; J. Adv. Defense Sci. & Technol. 2023, 14, 51-68 (In Persian). Dor:20.1001.1.26762935.1402. 14.1.5.5
[2] Wang, B.; He, Y.; Shui, Z.; Xin, Q.; Lei, H. “Predictive Optimization of DDoS Attack Mitigation in Distributed Systems using Machine Learning”; Appl. Comput. Eng. 2024, 64, 95-100. DOI:10.54254/2755 2721/64/20241350
[3] Mittal, M.; Kumar, K.; Behal, S. “Deep Learning Approaches for Detecting DDoS Attacks: A Systematic Review”; Soft computing 2023, 27, 13039-13075. DOI:10.1007/s00500-021-06608-1
[4] Kumari, P.; Jain, A. K. “A Comprehensive Study of DDoS Attacks Over IoT Network and Their Countermeasures”; Computers & Security. 2023, 127, 103096. DOI:10.1016/j.cose.2023.103096
[5] Mittal, M.; Kumar, K.; Behal, S. “Deep Learning Approaches for Detecting DDoS Attacks: A Systematic Review”; Soft Computing 2023, 27, 1-37. [v1] DOI:10.1007/s00500-021-06608-1
[6] Sattari, M. T.; Bagheri, R.; Shirini, K.; Allahverdipour, P. “Modeling Daily and Monthly Rainfall in Tabriz using Ensemble Learning Models and Decision Tree Regression”; Scientific Journal of Golestan University, 2024, 5, 31-48 DOI: 10.30488/CCR.2024.433394.1192
[7] Saleh Esfehani, M.; Abo Ali, M. “An IDS for Detection of Active Attacks Against Routing in Mobile Ad Hoc Networks”; J. Adv. Defense Sci. & Technol. 2010, 1, 15-22 (In Persian). Dor: 20.1001.1.26762935.1389.1.1.2.1
[8] Behal, S.; Kumar, K. “Characterization and Comparison of DDoS Attack Tools and Traffic Generators: A Review”; Int. J. Netw. Secur. 2017, 19,383-393DOI:10.6633/IJNS.201703.19(3).07
[9] Michelena, Á,; Aveleira‐Mata, J.; Jove, E.; Bayón‐Gutiérrez, M.; Novais, P.; Romero, O. F.; Aláiz‐Moretón, H. “A Novel Intelligent Approach for Man‐in‐the‐Middle Attacks Detection Over Internet of Things Environments Based on Message Queuing Telemetry Transport”; Expert Systems 2024, 41, e13263. DOI:10.1111/exsy.13263.
[10] Choorod, P.; George, W.; Anil Fernando. “Classifying for Traffic Encrypted Payload using Machine Learning”; IEEE Access. 2024. DOI: 10.1109/ACCESS.2024.3356073
[11] Priya, S. S.; Sivaram, M.; Yuvaraj, D.; Jayanthiladevi, A. “Machine Learning Based DDoS Detection”; International Conference on Emerging Smart Computing and Informatics. 2020, 234-237. DOI: 10.1109/ESCI48226.2020.9167642
[12] Kazemitabar, J.; Taheri, R.; Kheradmandian, H. “A Novel Technique for Improvement of Intrusion Detection via Combining Random Forrest and Genetic Algorithm”; J. Adv. Defense Sci. & Technol. 2019, 287-296 (In Persian). Dor: 20.1001.1.26762935.1398.10.3.9.5 [v2]
[13] Das, S.; Mahfouz, A. M.; Venugopal, D.; Shiva, S. “DDoS Intrusion Detection Through Machine Learning Ensemble”; IEEE 19th international conference on software Quality, Reliability and Security Companion. 2019, 471-477. DOI: 10.1109/QRS-C.2019.00090
[14] Asgharian, H.; Ahmad A.; Raahemi, B. “Engineered Feature Set to Detect Flooding Attacks in SIP Based VoIP’; J. Adv. Defense Sci. & Technol. 2019, 8, 61-69 (In Persian). Dor: 20.1001.1.26762935.1396.8.1.7.5
[15] Pande, S.; Khamparia, A.; Gupta, D.; Thanh, D. N. “DDOS Detection Using Machine Learning Technique”; Recent Studies on Computational Intelligence: Doctoral Symposium on Computational Intelligence, Springer Singapore 2021, 59-68. DOI:10.1007/978-981-15-8469-5_5
[16] Abdulla, N. N.; Hasoun, R. K. “Review of Detection Denial of Service Attacks Using Machine Learning Through Ensemble Learning”; Iraqi Journal for Computers and Informatics. 2022, 48, 13-20. DOI:10.25195/ijci.v48i1.349
[17] Sattari, M. T.; Shirini, K.; Javidan, S.” Evaluating the Efficiency of Dimensionality Reduction Methods in Improving the Accuracy of Water Quality Index Modeling using Machine Learning Algorithms”; Water and Soil Management and Modelling. 2024,4, 89-104. DOI: 10.22098/mmws.2023.12434.1241