Enhancing the Performance of Explosion-Proof Doors by Focusing on the Configuration of Stiffeners

Document Type : Original Article

Authors

1 Assistant professor, Khatam al-Anbiya Air Defense University, Tehran, Iran

2 PhD student, Amirkabir University of Technology, Tehran, Iran

Abstract

This study aims to enhance the performance of explosion-proof doors by analyzing the structure, arrangement, and features of their stiffeners. Numerous numerical models were developed to assess how the above parameters affect the performance of rectangular doors under blast loads. The modeled doors consist of stiffeners on their inner face that help them absorb energy and reduce displacement. An optimization process was also carried out to determine the best number and thickness of stiffeners that can minimize displacement while optimizing steel consumption. The analysis revealed that using a non-parallel stiffener can decrease the displacement of the door's center by about 30% while maintaining the same weight. Moreover, the optimal number of stiffeners depends on their thickness. If the thickness of the stiffener is less than 25% of the door panel's thickness, seven stiffeners should be used. If the thickness is between 25% to 40%, five stiffeners are optimal. When the thickness ranges from 40% to 60%, three stiffeners are sufficient, and if the thickness is greater than 60%, one stiffener will provide the best functionality for the explosion-proof door.

Keywords

Main Subjects


   [1]      Anderson, M.; Dover, D. “Lightweight, Blast-Resistant Doors for Retrofit Protection against the Terrorist Threat”; ARA Inc Panama City FL, 2003.
   [2]      Tolani, S.; Bharti, S. D.; Shrimali, M. K.; Datta, T. K. “Estimation of the Effect of Surface Blast on Buildings”; Proc. Inst. Civ. Eng. Struct. Build. 2021, 174, 202-214.
   [3]      Salehi, H.; Akbari, E. “Providing Architectural Patterns for Designing Hidden Buildings against Military Threats Based on the Built-in Camouflage Method”; J. Passive  Def. 2019, 10, 83-95 (In Persian).
   [4]      Adhikary, S. D.; Dutta, S. C. “Blast Resistance and Mitigation Strategies of Structures: Present Status and Future Trends”; Proc. Inst. Civ. Eng. Struct. Build. 2019, 172, 249-266. 
   [5]      Zhu, F.; Lu, G.; Ruan, D.; Wang, Z. “Plastic Deformation, Failure and Energy Absorption of Sandwich Structures with Metallic Cellular Cores”; Int. J. Prot. Struct. 2010, 1, 507-541.
   [6]      Goel, M. D.; Matsagar, V. A.; Gupta, A. K. “Dynamic Response of Stiffened Plates under Air Blast”; Int. J. Prot. Struct. 2011, 2, 139-155.
   [7]      Seyman, S.; Ebrahimzade, A. “Numerical Investigation of the Effect of Geometry on the Energy Absorption Rate of Sandwich Panels under Blast Loading”; J. Adv. Def. Sci. & Technol. 2020, 11, 347-355 (In Persian).
   [8]      Hao, H. “Preliminary Study of the Structure and Support Forms to Mitigate Blast and Impact Loading Effects”; Proc. 21st Australian Conf. Mech. Struct. Mater. 2011, 597-602.
   [9]      Li, C.; Qin, F.; Ya-Dong, Z.; Yi, Z.; Jun-Yu, F. “Numerical and Experimental Investigations on the Blast-Resistant Properties of Arched Rc Blast Doors”; Int. J. Prot. Struct. 2010, 1, 425-441.
[10]      Hause, T.; Librescu, L. “Dynamic Response of Doubly-Curved Anisotropic Sandwich Panels Impacted by Blast Loadings”; Int. J. Solids Struct. 2007, 44, 6678-6700.
[11]      Wang, C.; Xu, B.; Yuen, S. C. K. “Numerical Analysis of Cladding Sandwich Panels with Tubular Cores Subjected to Uniform Blast Load”; Int. J. Imp. Eng. 2019, 133, 103345.
[12]      Qin, F.; Li, C.; Mao-lin, D. “Theoretical and Numerical Investigations in Effects of End-Supported Springs and Dampers on Increasing Resistance of Blast Doors”; J. Eng. Mech., 2008, 25, 194-199.
[13]      Meng, F. M.; Xu, Y.; Gong, H. D.; Ma, S.; Wu, X. “Review on Design and Research of Protective Door”; J. Sichuan Ordnance 2015, 10, 161-164.
[14]      Hsieh, M. W.; Hung, J. P.; Chen, D. J. “Investigation on the Blast Resistance of a Stiffened Door Structure”; J. Mar. Sci. Technol.  2008, 16, 149-157.
[15]      Jacinto, A. C.; Ambrosini, R. D.; Danesi, R. F. “Experimental and Computational Analysis of Plates under Air Blast Loading”; Int. J. Imp. Eng., 2001, 25,  927-947.
[16]      Pan, Y.; Louca, L. A. “Experimental and Numerical Studies on the Response of Stiffened Plates Subjected to Gas Explosions”; J. Const.  Steel Res. 1999, 52, 171-193.
[17]      Louca, L.; Punjani, M.; Harding, J. “Non-Linear Analysis of Blast Walls and Stiffened Panels Subjected to Hydrocarbon Explosions”; J. Const.  Steel Res. 1996, 37,  93-113.
[18]      Yuen, S. C. K.; Nurick, G. “Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates. Part I: Subjected to Uniform Blast Load”; Int. J. Imp. Eng. 2005, 31,  55-83.
[19]      Langdon, G.; Yuen, S. C. K.; Nurick, G. “Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates. Part Ii: Localised Blast Loading”; Int. J. Imp. Eng. 2005, 31,  85-111.
[20]      Kadid, A. “Stiffened Plates Subjected to Uniform Blast Loading”; J.Civil Eng. Manag. 2008, 14, 155-161.
[21]      Salehi, H. “Reinforcing Doors of the Safe Constructions Using Multi-Arch Geometric Structures”; J. Adv. Def. Sci. & Technol. 2022, 13,  201-213 (In Persian).
[22]      Peyman, S.;toulabi, h. “Determination of Optimum Lenth of Blast Wave Trap and Analysis of Steel Explosion-Proof Door in the Tunnel with a Blast Wave Trap”; J. Adv. Def. Sci. & Tech., 2021, 12,  231-242 (In Persian).
[23]      Khalil, M.; Olson, M.; Anderson, D. “Nonlinear Dynamic Analysis of Stiffened Plates”; Comp. & Struct. 1988, 29,  929-941.
[24]      Minh Thanh, V.; Santosa, S. P.; Widagdo, D.; Putra, I. S. “Steel Plate Behavior under Blast Loading-Numerical Approach Using Ls-Dyna”; Appl. Mech. and Mater., 2016, 842, 200-207.
[25]      Mualla, I. H.; Belev, B. “Performance of Steel Frames with a New Friction Damper Device under Earthquake Excitation”; Eng. & Struct. 2002, 24,  365-371.