Investigation and Simulation of the Cn2 Parameter and its Effects on the Average Intensity Distribution, Spot Size, Radius of Curvature, and Rayleigh Length of the Laser Beam Propagation in the Atmosphere

Document Type : -

Authors

1 Department of Photonics/Faculty of Basic Science/ Imam Hussein Comprehensive University/ Tehran/Iran

2 Department of Photonics/ Faculty and Research Institute of Basic Science,/Imam Hossein Comprehensive University,/Tehran/ Iran

Abstract

One of the significant problems of laser propagation in the atmosphere is the atmospheric turbulence and fluctuations of refractive index, which affects the laser parameters. In this article, the effects of atmospheric refractive index structure parameter (Cn2) on the intensity distribution, spot size, radius of curvature, and Rayleigh length of the laser beam propagated with Gaussian profile, wavelength 1064 nm, size of beam waist 1 cm and power 1 W have been investigated. In order to predict Cn2 parameter values, Hufnagel-Valley (HV) and Hufnagel-Andrews-Phillips (HAP) models were compared. The simulation results show that in both models, the Cn2 parameter decreases with the increase in height. Also, although the HV model is suitable for determining the Cn2 parameter at high altitudes with the presence of wind, it does not determine the behavior of the Cn2 parameter as well as the experimental results and the HAP model at low altitudes and at different hours of the day. The simulation of laser propagation in the atmosphere shows that with the increase of the Cn2 parameter, the average intensity distribution decreases and the spot size increases; Also, the radius of curvature is reduced and the Rayleigh length first goes up and then goes down. Despite the problems of laser propagation in the atmosphere, the results of this article and future investigations seem necessary to reduce and compensate for these effects.

Keywords

Main Subjects


Smiley face

  1. [1] Ahmad, S. A.; Mohsin, M.; Ali, S. M. Z. “Survey and Technological Analysis of Laser and its Defense Applications”; Defence Technology 2021, 17.2, 583-592. https://doi.org/10.1016/j.dt.2020.02.012.
  2. [2] Taheri, M.; Vahedi, M. “Optical Fiber Sensors and their Application with Passive Protection”; Unit, Printing and Publishing Institute of Imam Hossein University (AS), 2019.
  3. [3] Fadavi, A. “Lidar System and Its Application in Naval Operations” Military Science and Technology 2010, 7.17, 97-116.
  4. [4] Lyubomir, L.; Edmunds, T.; Risham Singh, G. “Applications of Laser Technology in the Army”; Journal of Defense Management 2021, 11, 210.
  5. [5] Eslami Majd, A.; Naseri, A.; Adaminejad, H. “Investigation of the Effective Parameters of the Second Laser for the Decoy of the Nest Finder Laser Searcher”; Defence Sci. & Technol. 2019, 10.2, 131-140.
  6. [6] Andrews, L. C.; Phillips, R. L. “Laser Beam Propagation Through Random Media”; SPIE Publications: 2nd 2005.
  7. [7] Canuet, O.; François, L. “Atmospheric Turbulence Profile Modeling for Satellite-Ground Laser Communication”; Master's Thesis, Universitat Politècnica de Catalunya, 2015.
  8. [8] Qiang, X.; Liu, J.; Cheng, D.; Xiong, S.; Ye, X. “Irradiance Scintillation for Laser Beam Propagation in Turbulent Atmosphere”; Proc. Soc. Photo-opt. Instrum. Eng. 2002, 4926, 168-174. https://doi.org/10.1117/12.481687.
  9. [9] Jabczyński, J. K.; Gontar, P. “Impact of Atmospheric Turbulence on Coherent Beam Combining for Laser Weapon Systems”; Defence Technology. 2021, 17.4, 1160-1167. https://doi.org/10.1016/j.dt.2020.06.021.
  10. Andrews, L. C.; Phillips, R. L.; Wayne, D.; Leclerc, T.; Sauer, P.; Crabbs, R.; Kiriazes, J. “Near-Ground Vertical Profile of Refractive-Index Fluctuations”; Proc. Soc. Photo-Opt. Instrum. Eng. 2009, 7324, 11-22. https://doi.org/ 10.1117/12.820369.
  11. Mahmood, D. A.; Naif, S. S.; Al-Jiboori, M. H.; Al-Rbayee, T. “Improving Hufnagel-Andrews-Phillips Model for Prediction Cn2 Using Empirical Wind Speed Profiles”; J. Atmos. Sol-Terr. Phys. 2022, 240, 105952. https://doi.org/ 10.1016/j.jastp.2022.105952.
  12. Rasouli, S.; Taghi Tavassoly, M. “Measurement of the Refractive-Index Structure Constant, C2n, and its Profile in the Ground Level Atmosphere by Moiré Technique”; Proc. Soc. Photo-Opt. Instrum. Eng. 2006, 6364, 101-111. https:// doi.org/10.1117/12.683873.
  13. Bakhshi, H.; Darudi, A. “Analysis of Effective Beam Propagation Parameters on a FSO Link of Optics Lab. of University of Zanjan”; Icop. 2020, 26.0, 41-44.
  14. Hadilou, N.; Siampoor, H.; Alavinejad, M. “Improvement of Beam Quality Factor of Gaussian Schell-Model Beams by Using of Phase Aperture in a Turbulent Atmosphere”; Icop. 2014, 20.0, 857-860.
  15. Ghasemi, S. H.; Haghparast, A. “The Effects of Step Bulk Arrangement in Propagation of High-power Laser Beam in Atmosphere”; Braz. J. Phys. 2023, 53.1, 23.
  16. Chu, X.; Liu, Z.; Wu, Y. “Propagation of a General Multi-Gaussian Beam in Turbulent Atmosphere in a Slant Path”; J. Opt. Soc. Am. A. 2008, 25.1, 74-79. https://doi.org/ 10.1364/JOSAA.25.000074
  17. Ji, X.; Li, X. “Directionality of Gaussian Array Beams Propagating in Atmospheric Turbulence”; J. Opt. Soc. Am. A 2009, 26.2, 236-243. https://doi.org/10.1364/JOSAA.26. 000236.
  18. Ji, X.; Eyyuboğlu, H. T.; Baykal, Y. “Influence of Turbulence on the Effective Radius of Curvature of Radial Gaussian Array Beams”; Opt. Express. 2010, 18.7, 6922-6928. https://doi.org/10.1364/OE.18.006922.
  19. Ji, X.; Pu, Z. “Effective Rayleigh Range of Gaussian Array Beams Propagating Through Atmospheric Turbulence”; Opt. Commun. 2010, 283.20, 3884-3890. https://doi.org/ 10.1016/j.optcom.2010.06.025.
  20. Chib, S.; Dalil-Essakali, L.; Belafhal, A. “Comparative Analysis of Some Schell-Model Beams Propagating Through Turbulent Atmosphere”; Opt. Quant. Electron. 2022, 54.3, 175.
  21. Reich, S.; Schäffer, S.; Lueck, M.; Wickert, M.; Osterholz, J. “Continuous Wave High-Power Laser Propagation in Water is Affected by Strong Thermal Lensing and Thermal Blooming Already at Short Distances”; Sci. Rep. 2021, 11.1, doi: 10.1038/s41598-021-02112-6.
  22. Siampoor, H.; Hadilou, N.; Alavinejad, M. “Propagation of High Power Laser Beams through Atmosphere”; Icop. 2015, 21.0, 105-108. https://doi.org/10.1364/AO.15.001479
  23. Mohamed, A.; Chatterjee, M. “Non-Chaotic and Chaotic Propagation of Stationary and Dynamic Images Through MVKS Turbulence”; J. Mod. Optic. 2019, 66.13, 1392-1407. https://doi.org/10.1080/09500340.2019.1625980
  24. Andrews, L. C.; Phillips, R. L.; Wayne, D.; Sauer, P.; Leclerc, T.; Crabbs, R. “Creating a Cn2 Profile as a Function of Altitude using Scintillation Measurements along a Slant Path”; Proc. SPIE 2012, 8238, 95-106. https:// doi.org/10.1117/12.913756.
  25. Yousefi, M.; Talatian Azad, R.; Kashani, F.; Ghafary, B. “Scintillation Index Effects on the Bit Error Rate in Free Space Optical Communication of Incoherent Flat-Topped Laser Beam Propagating Through Turbulent Atmosphere”; Iran. J. Sci. Technol. 2015, 39.A3, 369. https://doi.org/ 10.1016/j.ijleo.2019.03.044.
  26. Hricha, Z.; Yaalou, M.; Belafhal, A. “Intensity Characteristics of Double-Half Inverse Gaussian Hollow Beams Through Turbulent Atmosphere”; Opt. Quant. Electron. 2020, 52, 1-8. https://doi.org/10.1007/s11082-020-02318-4.
  27. Hecht, E. “Hecht Optics”; Addison Wesley, 1998, 213-214.
  28. Ricklin J. C.; Davidson, F. M. “Atmospheric Turbulence Effects on a Partially Coherent Gaussian Beam: Implications for Free-Space Laser Communication”; J. Opt. Soc. Am. A. 2002, 19.9, 1794-1802. https://doi.org/10.1364/JOSAA.19. 001794
  29. Yuan, Y.; Liu, X.; Qu, J.; Yao, M.; Gao, Y.; Cai, Y. “Second-Order Statistical Properties of a J0-Correlated Schell-Model Beam in a Turbulent Atmosphere”; J. Quant. Spectrosc. Radiat. Transf. 2019, 224, 185-191. https:// doi.org/1016/j.jqsrt.2018.11.021