Usage of Turbo Coding to Improve the Performance of Underwater Telecommunication Systems Based on Adaptive OFDM Modulation

Document Type : Original Article

Authors

1 ausmt

2 Faculty of Engineering. Amol University of Special Modern Technologies, Amol, Iran

3 Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran.

4 mut

Abstract

The most important limitations for wireless underwater telecommunication systems are multipath, fading, attenuation, and extensive interference in underwater channels. In these channels, due to wide changes in the signal-to-noise ratio, transmitting and receiving in fixed modulation mode does not have the desired performance. For this reason, in this paper, the use of turbo coding to encode an adaptive modulation system based on orthogonal frequency division multiplexing (OFDM) is introduced for the first time, which reduces the transmission error and also achieves high efficiency. In the proposed system model, the optimal system was achieved by selecting appropriate parameters for communication in the underwater acoustic environment and also choosing proper modulation modes, which decreases the bit error rate by 16% compared to other systems introduced so far for underwater acoustic communication.

Keywords

Main Subjects


Smiley face

  1.  Fang, T.; Liu, S.; Ma, L.; Zhang, L.; Khan, I. U. “Subcarrier Modulation Identification of Underwater Acoustic OFDM Based on Block Expectation Maximization And Likelihood”; Appl. Acoust. 2021, 173, 107654-107661.
  2. Kilfoyle, D. B.; Baggeroer, A. B. “The State of the Art in Underwater Acoustic Telemetry”; IEEE J. Ocean. Eng. 2000, 25(1), 4-27.‏
  3.  Baggeroer, A. B.; Koelsch, D. E.; Von Der Heydt, K.; Catipovic, J. “DATS - A Digital Acoustic Telemetry System for Underwater Communications”; IEEE Oceans 81, 1981, 55-60.‏
  4. Mackelburg, G.; Watson, S.; Gordon, A. “Benthic 4800 BITS/S Acoustic Telemetry”; IEEE Oceans 1981, 81, 72-72.‏
  5.  Stojanovic, M.; Catipovic, J. A.; Proakis, J. G. “Phase-Coherent Digital Communications for Underwater Acoustic Channels”; IEEE J. Ocean. Eng. 1994, 19, 100-111.‏
  6.  Stojanovic, M. “OFDM for Underwater Acoustic Communications: Adaptive Synchronization and Sparse Channel Estimation”; IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, 5288-5291.
  7.  Ribas Oliva, J. “Underwater Wireless Video Transmission using Acoustic OFDM”; Graduation Thesis, 2009.
  8. Shen, W.; Sun, H.; Cheng, E.; Zhang, Y. “Performance Analysis of DFT-Spread Based OFDM Transmission System Over Underwater Acoustic Channels”; J. Converg. Inf. Technol. 2011, 6, 79-86.‏
  9. Gomathi, R.; Manickam, J. M. L. “PAPR Reduction Technique Using Combined DCT and LDPC Based OFDM System for Underwater Acoustic Communication”; J. Eng. Appl. Sci. 2016, 11, 4424-4430.‏
  10. Radosevic, A.; Ahmed, R.; Duman, T. M.; Proakis, J. G.; Stojanovic, M. “Adaptive OFDM Modulation for Underwater Acoustic Communications: Design Considerations and Experimental Results”; IEEE J. Ocean. Eng. 2013, 39, 357-370.‏
  11. Zhou, Y.; Tong, F. “Research and Development of a Highly Reconfigurable OFDM MODEM For Shallow Water Acoustic Communication”; IEEE Access. 2019, 7, 123569-123582.‏
  12. Yang, Y.; Li, Y. “Research and Implementation of Turbo Coding Technology in High-Speed Underwater Acoustic OFDM Communication”; J. Robot. 2022, 2022.
  13. Wan, L.; Zhu, J.; Cheng, E.; Xu, Z. “Joint CFO, Gridless Channel Estimation and Data Detection for Underwater Acoustic OFDM Systems”; IEEE J. Ocean. Eng. 2022, 1-16.
  14. Zhou, S.; Wang, Z. “OFDM for Underwater Acoustic Communications”; John Wiley & Sons, 2014.‏
  15. Danaee, M. M.; Nadri, H. “Channel Estimation in HF Encryptor Modem Based on OFDM”; Passive Defence Sci. & Technol. 2011, 2, 307-314 (In Persian).
  16. Shi, X. L.; Yang, Y. X.; Yang, L. “An OFDM System for Long-Range Underwater Acoustic Communications”; Appl. Mech. Mater. 2013, 321, 1274-1277.
  17. “IEEE 802.11a-1999 - IEEE Standard for Telecommunications and Information Exchange between Systems - LAN/MAN Specific Requirements - Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High Speed Physical Layer in the 5GHz Band”; Available on https://standards.ieee.org/standard/802_11a-1999.html.
  18. Stojanovic, M.; Preisig, J. “Underwater Acoustic Communication Channels: Propagation Models and Statistical Characterization”; IEEE Commun. Mag. 2009, 47, 84-89.‏
  19. ‏Li, B.; Zhou, S.; Stojanovic, M.; Freitag, L.; Willett, P. “Multicarrier Communication over Underwater Acoustic Channels with Nonuniform Doppler Shifts”; IEEE. J. Ocean. Eng. 2008, 33, 198-209.‏
  20. Shannon, C. E. “A Mathematical Theory of Communication”; AT&T Tech. J. 1948, 27, 379-423.‏
  21. Berrou, C.; Glavieux, A.; Thitimajshima, P. “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo-Codes. 1”; IEEE Int. Conf. Commun. 1993, 2, 1064-1070.
  22. De Gaudenzi, R.; Fabregas, A. G.; Martinez, A. “Performance Analysis of Turbo-Coded APSK Modulations over Nonlinear Satellite Channels”; IEEE Trans. Wirel. Commun. 2006, 5, 2396-2407.
  23. Wan, L.; Zhou, H.; Xu, X.; Huang, Y.; Zhou, S.; Shi, Z.; Cui, J. H. “Adaptive Modulation and Coding for Underwater Acoustic OFDM”; IEEE J. Ocean. Eng. 2014, 40, 327-336.‏
  24. Faezah, J.; Sabira, K. “Adaptive Modulation for OFDM Systems”; Int. J. Commun. Netw. Inf. Secur. 2009, 1, 1-8.
  25. Chaves, R. S.; Martins, W. A.; Diniz, P. S. “Modeling and Simulation of Underwater Acoustic Communication Systems”; XXXV Brazilian Communications and Signal Processing Symposium, 2017, 607-611.