[1] Al-Yaseen, W. L.; Othman, Z. A.; Nazri, M. Z. A. “Multi-Level Hybrid Support Vector Machine and Extreme Learning Machine Based on Modified K-Means for Intrusion Detection System”; Expert Systems with Applications 2017, 67, 296-303.##
[2] Jun-lan, Y. A. O. “Intrusion Detection Technology and Its Future Trend”; Journal of Information Technology 2006, 4, 172–176.##
[3] Ahmed, M.; Naser Mahmood, A.; Hu, J. “A Survey of Network Anomaly Detection Techniques”; Journal of Network and Computer Applications 2016, 60, 19-31.##
[4] Abe, S.; Thawonmas, R. “A Fuzzy Classifier with Ellipsoidal Regions”; IEEE Transactions on Fuzzy Systems 1997, 5, 358-368.##
[5] Wu, S. X.; Banzhaf, W. “The Use of Computational Intelligence in Intrusion Detection Systems: A Review”; Appaon”; IEEE Netw. 1994, 8, 26–41.##
[10] Denning, D. E. “An Intrusion-Detection Model”; IEEE Transactions on Software Engineering 1987, SE-13, NO-2,
222–232.##
[11] Chebrolu, S.; Abraham, A.; Thomas, J. P. “Feature Deduction and Ensemble Design of Intrusion Detection Systems”; Computers & Security 2005, 24, 295–307.##
[12] Aljawarneh, S.; Aldwairi, M.; Yassein, M. B. “Anomaly-Based Intrusion Detection System through Feature Selection Analysis and Building Hybrid Efficient Model”; Journal of Computational Science 2018, 25, 152–160.##
[13] Butun, I.; Morgera, S. D.; Sankar, R. “A Survey of Intrusion Detection Systems in Wireless Sensor Networks”; IEEE Communications Surveys & Tutorials 2014, 16, 266–282.##
[14] Chawla, A.; Lee, B.; Fallon, S.; Jacob, P. “Host Based Intrusion Detection System with Combined CNN/RNN Model”; European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 2018, 149-158.##
[15] Ficke, E.; Schweitzer, K.; Bateman, R.; Xu, S. “Characterizing the Effectiveness of Network-Based Intrusion Detection Systems”; IEEE Military Communications Conference 2018, 76-81.##
[16] Indhumathi, M.; Kavitha, S. “Distributed Intrusion Detection System for Cognitive Radio Networks Based on Weighted Fair Queuing Algorithm”; International Journal of Research in Computer Science, Engineering and Information Technology 2018, 426-436.##
[17] Bhuyan, M. H.; Bhattacharyya, D. K.; Kalita, J. K. “Network Anomaly Detection: Methods, Systems and Tools”; IEEE Communications Surveys & Tutorials 2013, 16, 303–336.##
[18] Jianliang, M.; Haikun, S.; Ling, B. “The Application on Intrusion Detection Based on K-Means Cluster Algorithm”; International Forum on Information Technology and Applications 2009, 1, 150–152.##
[19] Ding, C.; He, X. “K-Means Clustering via Principal Component Analysis”; International Conference on Machine Learning, 29-37.##
[20] Bharti, K.; Shukla, S.; Jain, S. “Intrusion Detection Using Unsupervised Learning”; International Journal of Computational Science and Engineering 1865, 2, 2010.##
[21] Ren, W.; Cao, J.; Wu, X. “Application of Network Intrusion Detection Based on Fuzzy C-Means Clustering Algorithm”; Intelligent Information Technology Application 2009,
3, 19–22.##
[22] Guorui, F.; Xinguo, Z.; Jian, W. “Intrusion Detection Based on the Semi-Supervised Fuzzy C-Means Clustering Algorithm”; Conference on Consumer Electronics, Communications and Networks 2012, 2667–2670.##
[23] Sampat, R.; Sonawani, S. “Network Intrusion Detection Using Dynamic Fuzzy c Means Clustering”; Network
2015, 2, 135-141.##
[24] Hameed, S. M.; Saad, S.; Alani, M. F. “An Extended Modified Fuzzy Possibilistic C-Means Clustering Algorithm for Intrusion Detection”; Lecture Notes on Software Engineering 2013, 1, 273-278.##
[25] Ganapathy, S.; Kulothungan, K.; Yogesh, P.; Kannan, A. “A Novel Weighted Fuzzy C–Means Clustering Based on Immune Genetic Algorithm for Intrusion Detection”; Procedia Engineering 2012, 38, 1750–1757.##
[26] Khazaee, S.; Rad, M. S. “Using Fuzzy C-Means Algorithm for Improving Intrusion Detection Performance”; International Financial Services Commission 2013, 27–29.##
[27] Kumar, G. R.; Mangathayaru, N.; Narsimha, G. “An Approach for Intrusion Detection Using Fuzzy Feature Clustering”; The International Conference on Engineering & MIS 2016, 1–8.##
[28] Pandeeswari, N.; Kumar, G. “Anomaly Detection System in Cloud Environment Using Fuzzy Clustering Based ANN”; Mob. Networks Appl. 2016, 21, 494–505.##
[29] Principal, V. “Intrusion Detection System Using Kernel FCM Clustering and Bayesian Neural Network”; Data Bases 2013, 3, 391-399.##
[30] Rustam, Z.; Talita, A. S. “Fuzzy Kernel C-Means Algorithm for Intrusion Detection Systems”; J. Theor. Appl. Inf. Technol. 2015, 81, 161-165.##
[31] Khazaee, S.; Faez, K. “A Novel Classification Method Using Hybridization of Fuzzy Clustering and Neural Networks for Intrusion Detection”; Int. J. Mod. Educ. Comput. Sci. 2014, 6, 11-24.##
[32] Surana, S. “Intrusion Detection Using Fuzzy Clustering and Artificial Neural Network”; Adv. Neural Networks, Fuzzy Syst. Artif. Intell. 2013, 209–217.##
[33] Harish, B. S.; Kumar, S. V. A. “Anomaly Based Intrusion Detection Using Modified Fuzzy Clustering”; International J. of Interactive Multimedia and Artificial Intelligence 2017, 4, 54–59.##
[34] Mishra, D.; Naik, B. “Detecting Intrusive Behaviors Using Swarm-Based Fuzzy Clustering Approach”; South Carolina Dental Association 2019, 837–846.##
[35] Gaffarpour, R.; Pourmusa, A. A.; Ranjbar, A. M. “Presenting an Index for Evaluation of Power Network Security Using Fuzzy Set Theory”; Adv. Defence Sci. & Technol. 2019, 7, 289–304 (In Persian).##
[36] Mendel, J. M. “Uncertain Rule-Based Fuzzy Systems”; Introduction and New Directions; Springer International Publishing, 2017.##
[37] Bezdek, J. C.; Ehrlich, R.; Full, W. “FCM: The Fuzzy c-Means Clustering Algorithm”; Comput. Geosci. 1984, 10, 191–203.##
[38] Mirjalili, S.; Lewis, A. “The Whale Optimization Algorithm”; Adv. Eng. Softw. 2016, 95, 51–67.##
[39] “KDD-CUP 1999 Dataset”; http://kdd.ics.uci.edu/databases/ kddcup99/, 2019.##
[40] Revathi, M.; Ramesh, T. “Network Intrusion Detection System Using Reduced Dimensionality”; Indian J. Comput. Sci. Eng. 2011, 2, 61–67.##
[41] Sabhnani, M.; Serpen, G. “Application of Machine Learning Algorithms to KDD Intrusion Detection Dataset within Misuse Detection Context”; MLMTA 2003, 209–215.##
[42] Kayacik, H. G.; Zincir-Heywood, A. N.; Heywood, M. I. “Selecting Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99 Intrusion Detection Datasets”; Proceedings of the Annual Conference on Privacy, Security and Trust 2005, 94, 1723-1728.##
[43] Kazemitabar, J.; Taheri, R.; Kheradmandian, Gh. “A Novel Technique for Improvement of Intrusion Detection via Combining Random Forrest and Genetic Algorithm”; Adv. Defence Sci. Technol. 2019, 10, 287–296 (In Persian).##
[44] Syarif, I.; Prugel-Bennett, A.; Wills, G. “Unsupervised Clustering Approach for Network Anomaly Detection”; Networked Digital Technologies 2012, 135–145.##
[45] Chimphlee, W.; Abdullah, A. H.; Sap, M. N. M.; Srinoy, S.; Chimphlee, S. “Anomaly-Based Intrusion Detection Using Fuzzy Rough Clustering”; International Conference on Hybrid Information Technology 2006, 1, 329–334.##