Synthesis and Characterization of the BaMgAl10O17:Eu2+ Scintillator Nanoparticles and its Investigation as Beta Detector

Document Type : Original Article

Authors

1 Department of Physics, Imam Hossein Comprehensive University

2 Department of Chemistry, Imam Hossein Comprehensive University

3 a Department of Physics, Imam Hossein Comprehensive University

Abstract

In this research, doped and undoped BaMgAl10O17 nanoparticles were synthsized using a new simple combustion synthetic method. A hybrid fuel consisting of urea and glycine was utilized in absence of reductive atmosphe .The morphology, structure, purity of sample phases and the features of nanoparticles light-glowing were investigared using field emission scanning electron microscope (FE-SEM), X-Ray Diffraction (XRD) pattern, and Photoluminescence (PL). The effect of urea fuel was studied either solely or mixed with glycine for the dopant reduction. The results of morphology and X-ray diffraction imply narrow-bar-structured rice with an approximated dimension of 45 - 65 nm with roughly high purity. In the synthesized doped europium with urea hybrid fuel and glycine, the photoluminescence emission spectrum is observed within the wavelengthrange of 400-500 nm centered at 447 nm. The scintillation responses of the samples to the 90Sr beta and 241Am gamma radiation sources and the ,discrimination capability of beta and gamma emissions in the 90Sr/90Y sources are investigated. The results showed that the activated nanoparticles having doped Eu2+ have a good sensitivity to bate particles and. can be an appropriated alternative for detection applications of beta particles in the spaces combined with gamma photons and beta particles.

Keywords

Main Subjects


[1]     Mohammadi, H.; Abdi, M. R.; Habibi, M. H. “Synthesis, and Scintillation Properties of Cerium – Doped Gd2SiO5 Nanopowders Under Alpha Radiation and the Importance of Selecting the Appropriate Calcination Temperature”; J. Lumin. 2020,219, 116849.##
[2]     Van Eijk, C. W. E. “Inorganic Scintillators in Medical Imaging Detectors”; Nucl. Instrum. Methods Phys. Res. A 2003,50917-25.##
[3]     Kamenev, A.; Chen, F.; Zhan, Y.; Majewski, R. L.; Cai, W. “Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy”; ACS Nano 2016,10, 3918-3935.##
[4]     Mazhdi, M.; Tafreshi, M. J. “The Investigation of Scintillation Properties of Gadolinium Doped Zinc Oxide Nanoparticles for Nuclear Radiation Detection”; Phys. Res. A2020,959, 1-6.##
[5]     Lecoq, P.; Schneegans, M., “Progress and Prospects in the Development of New Scintillators for Future High Energy Physics Experiments”; Nucl. Instrum. Methods Phys. Res. A 1992,315, 337-343.##
[6]     Rahimi, M.; Zahedifar, M.; Azimirad, R.; Faeghina, A. “Luminescence, and Scintillation Properties of Eu2+ Doped CaFGlass Ceramics for Radiation Spectroscopy”; J. Lumin., 2020, 11704,1-27.##
[7]     Liu, R. S. “Phosphors, Up conversion Nanoparticles, Quantum Dots, and Their Applications”; Vol. 1, Springer-Verlag Berlin, 2017, ISBN 978-3-662-52769-6 (eBook)##
[8]     Yokota, K.; Zhang, S. X.; Kimura, K.; Sakamoto, A. “Eu2+- Activated Barium Magnesium Aluminate Phosphor for Plasma Display Phase Relation and Mechanism of Thermal Degradation”; J. Lumin, 2001, 92(3), 223–227.##
[9]     Shukla, R. S. V. K.; Mishra, P.; Pandey, Sh. K.; Kumar, K.; Baranwal, V.; Kumar, M.; Pandey, A. C. “Enhanced Blue Luminescence in BaMgAl10O17: Eu, Er, Nd Nanophosphor for PDPs and Mercury-free Fluorescent Lamps”; J. Alloys Comp., 2013, 547, 1-4.##
[10]  Shivani, P.; Gupta, M.; Jaiswal, V.; Ravinder, G.; Serrlatha, C. J.; Hussain, K. A.; Vijaya Prakash, G.; Haranath, D. “Unusual Red-Shift and Enhanced Photoluminescence of BaMgAl10O17: Eu2+ Phosphor under Ultraviolet an Excitation for Modern Lighting Systems”; J. Nanosci, and Nanotech, 2020, 20, 3854-3858.##
[11]  Bitao, L.; Yuhua, W.; Feng, Z.; Zhaofeng, W. “The Reduction of Eu3+ to Eu2+ in BaMgAl10O17: Eu and the Photoluminescence Properties of BaMgAl10O17:Eu2+ Phosphor”; J. Appl. Phys., 2009,106, 053102.##
[12]  Justel, T.; Lade, H.; Mayr, W.; Meijerink, A.; Wiechert, D. U. “Thermoluminesce Spectroscopy of Eu2+ and Mn2+ Doped BaMgAl10O17”; J. Lumin. 2003,101, 195-210.##
[13]  Kumar, M.; Rajput, P.; Singh, P. K.; Yadav, A. C.; Pradhan, S. L.; Baranwal, V.; Singh, U. B.; Jha, S. N.; Singh, F. “Luminescence Properties of BaMgAl10O17:Mn2+ Nanophosphors”; J. Alloys Compd,2019,799, 556-562.##
[14]  Zhang, Z.; Feng, J.; Huang, Z. “Synthesis and Characterization of BaMgAl10O17: Eu2+ Phosphor Prepared by Homogeneous Precipitation”; J. Particuology, 2010, 8, 473- 476.##
[15]  Jeong, Y. K.; Kin, H. J.; Choi, H. “Luminescent Properties of BaMgAl10O17: Eu2+ Blue Phosphor Grown with SiO2 Using Atomic Layer Deposition”; Appl. Phys., 2009,9, 249-251.##
[16]  Varma, A.; Mukasyan, A. S.; Rogachev, A. S.; Manukyan, K. V. “Solution Combustion Synthesis of Nanoscale Materials”; Chem. Rev., 2016, 116, 14493-14586.##
[17]  Singh, V.; Singh, N.; Pathak, M. S.; Watanabe, S.; Gundu Rao, T. K.; Jadhav, N.; Kwon, Y. W. “PL and ESR Study on the UVB-Emitting Gadolinium-Doped BaMgAl10O17 Hexagonal Phase Obtained by Combustion Synthesis”; J. Electron. Mater. 2018,47, 7365-7371.##
[18]  Pradal, N.; Chadeyron, G.; Therians, S.; Potdevin, A.; Santilli, C. V.; Mahiou, R. “Investigation on Combustion Derived BaMgAl10O17:Eu2+ Phosphor Powder and its Corresponding PVP/BaMgAl10O17: Eu2+ Nanocomposite”;Dalton Trans.  2014,43, 1072-1081.##
[19]  Zambare, A. P.; Prasad, A. S. S.; Natrajan, V.; Nageswara Rao, B.; and Murthy, K. V. R. “Thermoluminescence Studies of BaMgAl10O17 Doped with Eu Phosphors”; J. Pure  Appl. Phys., 2009,47, 453-455.##
[20]  Tanno, H.; Zhang, Sh.; Shinoda, T.; Kajiyama, H. “Characteristics of Photoluminescence, Thermoluminescence, and Thermal degradation in Eu-doped BaMgAl10O17 and SrMgAl10O17”; J. Lumin. 2010,130, 82-86.##
[21]  NuChart; Version 4.0.0; Canberra, July, 1998.##
[22]  Hwang, K.S.; Hwangbo, S.; Kim, J.T. “ Chemical Solution- derived SrMg2(PO4)2:Eu2+ Bluephospher for ultraviolet emitting diodes”, Optica  Applicata, Vol. XL, 2010, 4.##
[23]  Knoll,  F. G. “Radiation Detection and Measurement”; 4th ed., John Wiley& Sons, New York, 2010, 235-270.##