Improvement of Inter Area Oscillation Damping Using Synchronverter Control Model for Solar Power Plants

Document Type : Original Article

Authors

1 Zanjan Regional Electric Company

2 Department of Electrical Engineering, Sahand University of Technology

Abstract

From a passive defense perspective, renewable sources are strategic resources and can be a good alternative to conventional power plants in the event of war or sanctions. In this paper, the capability of solarpower plant to improve the inter area oscillations damping in the power grid is investigated. Due to the significant increase in solar power plants with high penetration levels in the power system, the participation of these resources in order to increase the damping of power system inter area oscillations seems to be important. Accordingly, the purpose of this paper is to use the Synchronverter control model to improve the inter area oscillations damping and also to increase the inertia of the power system in the presence of a solar power plant. To perform the simulations in this paper, the solar power plant with its controllers in the DSL environment of DIgSILENT PowerFactory software is precisely modeled. In order to show the capability of the synchronverter control model to improve the damping of inter area oscillations, Kundur power system as well as the transmission network of Zanjan Regional Electricity Company have been used to perform simulations in the time domain. The results of the simulations performed in the conditions of occurrence of various disturbances (change of torque, sudden increase of load and short circuit fault), show the proper performance of the proposed method.

Keywords

Main Subjects


[1]     Gaffarpour, R.; Ranjbar, A. “Presentation of Special Protection Scheme in Power System to Reduce Graphite Bomb Attacks Damages”; J. Adv. Defence Sci. Technol. 2017, 4, 33-34 (In Persian).##
[2]     Shahriyari, M.; Khoshkhoo, H. “A Novel Approach for Fast Prediction of Transient Angle Stability Status in Power Systems”; J. Adv. Defence Sci. Technol. 2020, 3, 309-324 (In Persian).##
[3]     Zhiyuan, T.; Hill, D. J.; Tao, L.; Song, Y. “Distributed Inter-Area Oscillation Damping Control for Power Systems by Using Wind Generators and Load Aggregators”;  Int. J. Elec. Power. Syst. 2020, 123, 106201.##
[4]     Lin, Z.; Xirui, Y.;, Bin, L.; Chen, Z.; Jinhong, L.; Qiang, L.; Ke G. “Damping Inter-Area Oscillations with Large-Scale PV Plant by Modified Multiple-Model Adaptive Control Strategy”;   IEEE Trans. Sustain. Energ. 2017, 1629-1636.##
[5]     Cai, L. J.; Erlich, I. “Simultaneous Coordinated Tuning of PSS and FACTS Damping Controllers in Large Power Systems”;  IEEE Trans. Power Syst. 2005, 20, 294-300.##
[6]     Therattil, J. P.; Jose, J.; Prasannakumari, P. R. N.; Abo-khalil, A. G.; Alghamdi, A. S.; Rajalekshmi, B. G.; Sayed, K. “Hybrid Control of a Multi-Area Multi-Machine Power System with FACTS Devices Using Non-linear Modelling”;  IET Gen. Trans. Dist. 2020, 14, 1993-2003.##
[7]     Razali, N.M.; Ramachandaramurthy, V.K.; Mukerjee, R.N. “Power System Stabilizer lacement and Tuning Methods for Inter-Area Oscillation Damping”; Int Power and Energy Conf. 2006, 173-178.##
[8]     Ke, D. P.; Chung, C. Y. “An Inter-Area Mode Oriented Pole-Shifting Method with Coordination of Control Efforts for Robust Tuning of Power Oscillation Damping Controllers”; IEEE Trans. Power Syst. 2012, 27, 1422-1432.##
[9]     Zhixin, M.; Lingling, F.; Osborn, D.; Yuvarajan, S. “Control of DFIG-Based Wind Generation to Improve Inter-Area Oscillation Damping”; IEEE Trans. Energy Convers. 2009, 24, 415-422.##
[10]  Eltigani, D.; Syafrudin, M. “Challenges of Integrating Renewable Energy Sources to Smart Grids: A Review”;   Renew. Sustain. Energ. 2015, 52,770-780.##
[11]  Silva, S.; Horacio, D.; Arnaldo Pulgar, H.; M. Tolbert, L.; Schoenwald,  D.; Wenyun, J. “Enabling Utility-Scale Solar PV Plants for Electromechanical Oscillation Damping”;  IEEE Trans. Sustain. Energy. 2020.##
[12]  Shah, R.; Mithulananthan, N.; Bansal, R.C.; Ramachandaramurthy, V.K. “A Review of Key Power System Stability Challenges for Large-Scale PV Integration”;  Renew. Sustain. Energ. 2015, 41, 1423-1436.##
[13]  Cabrera-Tobar, A.; Bullich-Massagué, E.; Aragüés-Peñalba, M.; Gomis-Bellmunt, O. “Review of Advanced Grid Requirements for the Integration of Large Scale Photovoltaic Power Plants in the Transmission System”;  Renew. Sustain. Energ. 2016, 62, 971-987.##
[14]  Zhong, Q.-C.; Weiss, G. “Synchronverters: Inverters that Mimic Synchronous Generators”; 2011, 58, 2011, 1259-1267.##
[15]  Younis, T.; Ismeil, M.; Orabi, M, Hussain EK. “A Single-Phase Self-Synchronized Synchronverter with Bounded Droop Characteristics”; IEEE Application Power Electronic Conf. 2018.##
[16]  Natarajan, V.; Weiss G. “Synchronverters with Better Stability Due to Virtual Inductors, Virtual Capacitors, and Anti- Windup”; IEEE Trans. Ind. Electron. 2017, 64, 5994–6004.##
[17]  Zhong, Q.; Nguyen, P.; Ma, Z.; Sheng, W. “Self-Synchronized Synchronverters: Inverters without a Dedicated Synchronization Unit”; IEEE Trans. Power Electron. 2014, 29, 617-630.##
[18]  Brown, E.; Weiss, G. “Using Synchronverters for Power Grid Stabilization”; 28th Convention of Electrical & Electronics Engineers, 2014.##
[19]  Yazdani, A.; Iravani, R. “Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications”; John Wiley & Sons. 2010.##
[20]  Kundur, P. “Power System Stability and Control”, McGraw-Hill, Palo Alto, California, 1994.##
[21]  Pal, B.; Balarko, C. “Robust Control in Power Systems”; Power Electronics and Power Systems Series, Springer-Verlag. 2005.##
[22]  Jingyang, F.; Hongchang, L.; Yi, T.; Blaabjerg, F. “Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters”; IEEE Trans. Power Electron. 2017, 33, 8488-8499.##
[23]  Zaman, M. S. U.; Bukhari, S. B. A.; Haider, R.; Khan, M. O.; Baloch, S.; Kim, C. H.  “Sensitivity and Stability Analysis of Power System Frequency Response Considering Demand Response and Virtual Inertia”;  IET Gen. Trans. Dist. 2020, 14, 986-996.##
[24]  Fitzgerald, A.E.; Kingsley, C.; Umans, S.D. “Electric Machinery”; McGraw-Hill, New York. 2003.##
[25]  Fokkema, D. R.; Sleijpen, G. L.; Van der Vorst, H. A. “Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils”;  J. Sci. Computing. 1998, 20, 94-125.##