Dual Helix Slow Wave Structure Cold Characteristics Analysis Using a Structural Model for Traveling-Wave Tube

Document Type : -

Authors

1 Ph.D student Malek Ashtar University of Technology

2 Malek Ashtar University of Technology

3 Iran University of Science and Technology

Abstract

In this paper, a simplified model for dual helix cold characteristics (phase velocity and interaction impedance) analysis is presented. The model comprises a conventional circular helix with the center being at a distance of its radius from the envelope center. The cold characteristics of the proposed model are calculated using the sheath field analysis approach. Since the centers of the shifted helix and theenvelope of the proposed model are not coincident, the addition theorem is used for electromagnetic equations. Compared to simulation results of the dual helix in the frequency range of 1-6 GHz, the calculated results of the proposed model show the accuracy ranges of more than %94 and %87 for the phase velocity and interaction impedance, respectively.

Keywords

Main Subjects


[1]     Coaker, B.; Challis, T. “Travelling Wave Tubes: Modern Devices and Contemporary Applications”; Microwave Journal 2008, 32-45.##
[2]     Pchelnikov, Y. N.; Abe, D. K. “A Novel Millimeter-Wave Structure for Longitudinal Interaction with a Sheet Electron Beam”; IEEE Trans. Electron Devices 2018, 65, 2135-2141.##
[3]     Wang, J.; Shu, G.; Liu, G.; Yang, L. Y.; Luo, Y. “Ultrawideband Coalesced-mode Operation for a Sheet-beam Traveling-wave Tube”; IEEE Trans. Electron Devices 2016, 63, 504–511.##
[4]     Kowalski, E. J.; Shapiro, M. A.; Temkin, R. J. “An Overmoded W-band Coupled-cavity TWT”; IEEE Trans. Electron Devices 2015, 62, 1609–1616.##
[5]     Kompfner, R. “The Traveling-wave Tube as Amplifier of Microwaves”; Proc. IRE 1947, 35, 124–127.##
[6]     Swaminathan, K.; Zhao, C.; Chua, C.; Aditya, S. “Vane-loaded Planar Helix Slow-wave Structure For Application in Broadband Traveling-wave Tubes”; IEEE Trans. Electron Devices 2015, 62, 1017–1023.##
[7]     Lucken, J. A. “Some Aspects of Circuit Power Dissipation in High Power CW Helix Traveling-wave Tubes, part I: General Theory”; IEEE Trans. Electron Devices 1969, 16, 813–820.##
[8]     Gilmour, A. S. “Principles of Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-field Amplifiers, and Gyrotrons”; Artech House, MA, USA, 2011.##
[9]     https://www2.l3t.com/edd/old/products/products_helix.htm##
[10]  Gholamrezaei, M.; Razavi, M.; Hamidi, E.; Kashani, F. H. “Multihelix Structure (MHS) for Traveling Wave Tube Power Enhancement”; Proc. 24th Int. Iranian Conf. Electrical Eng. (ICEE), Shiraz, Iran, 2016.##
[11]  Pozar, D. M. “Microwave and RF Design of Wireless Systems”; New York, NY, USA: Wiley, 2012.##
[12]  Gholamrezaei, M.; Hamidi, E.; Kashani, F. H. “∞-Shaped (Lemniscatical) Helix Slow-Wave Structure (LH-SWS) for High-Power Traveling-Wave Tubes”; IEEE Trans. Electron Devices 2018, 65, 2607-2613.##
[13]  Shatrov, A. D.; Sivov, A. N. ; Chuprin, A. D. “Investigation of Multifilar Helical Antennas with Small Radius and Large Pitch Angle on Basis of Eigenmodes of Infinite Sheath Helix”; Electronics Letters 1994, 30, 1558-1560.##
[14]  Kumar, A.; Aditya, S. “Simplified Tape-Helix Analysis of the Planar Helix Slow Wave Structure with Straight-Edge Connections”; IEEE Trans. Electron Devices 2018, 65, 2280-2286.##
[15]  Wei, W.; Wei, Y.; Wang, W.; Zhang, M.; Gong, H. “Dispersion Equations of a Rectangular Tape Helix Slow-Wave Structure”; IEEE Trans. Microwave Theory and Techniques 2015, 63, 1445-1456.##
[16]  Pchelnikov, Y. N.; Abe, D. K. “A Novel Millimeter-Wave Structure for Longitudinal Interaction with a Sheet Electron Beam”; IEEE Trans. Electron Devices 2018, 65, 2135-214.##
[17]  Safi, D.; Birtel, P.; Meyne, S.; Jacob, A. F. “A Traveling-Wave Tube Simulation Approach with CST Particle Studio”; IEEE Trans. Electron Devices 2018, 65, 2257-2263.##
[18]  Fu, C.; Wei, Y.; Gong, Y.; Wang, W. “Simulation of Rectangular Helix Slow-Wave Structure for 140 GHz Traveling-Wave Tube”; IEEE Trans. Plasma Sci. 2016, 44, 1069-1074.##
[19]  Abu-elfadl, T. A.; Nusinovich, G. S.; Shkvarunets, A. G.; Carmel, Y.; Antonsen Jr, T. M.; Granatstein, V. L. “Efficiency of Helix Pasotron Backward-wave Oscillator”; IEEE Trans. Plasma Sci. 2002, 30, 1126-1133.##
[20]  Gewartowski, J. W.; Watson, H. A. “Principles of Electron Tubes”; D. Van Nostrand, NJ, USA, 1965.##
[21]  Chong, C. K.; Davis, J. A.; Le Borgne, R. H.; Ramay, M. L.; Stolz, R. J.; Tamashiro, R. N.; Vaszari, J. P. “Development of High Power Ka-band and Q-band Helix-TWTs”; IEEE Trans. Electron Devices 2005, 52, 653-659.##
[22]  Chong, C. K.; Layman, D.; Le Borgne, R. H.; Olivieri, M.; Ramay, M. L.; Stolz, R. J. “Development of High Power Ka/Q Dual-band and Communications/radar Dual-function Helix-TWT”; IEEE Trans. Electron Devices 2009, 55, 913-918.##
[23]  Dayton, J. A.; Dayton, J. A.; Kory, C. A.; Mearini, G. T.; Malta, D.; Lueck, M.; Bower, C. A. “A 650 GHz helical BWO”; Proc. IEEE Int. Vac. Electron. Conf., Monterey, CA, 2008.##
[24]  L3 Electron Devices “L2086 Helix Traveling Wave Tube”; http://www.L3.com, 2017.##
[25]  Chong, C. K. “500 W Ka-band Helix-TWT: Transition from Development to Production”; Proc. IEEE Int. Vac. Electron. Conf., 2009.##
[26]  L3 Electron Devices “MMW-band Traveling Wave Tube”; http://www.L3.com, 2017.##
[27]  Pierce, J. R. “Traveling-wave Tubes”; D. Van Nostrand, 1950.##
[28]  Basu, B. N. “Electromagnetic Theory and Applications in Beam-wave Electronics”; Singapore, World Scientific, 1995.##
[29]  Zhang, K.; Li, D. “Electromagnetic Theory for Microwaves and Optoelectronics”; Springer-Verlag, NY, USA, 1998.##
[30]     Macphie, R. H.; Wu, K. L. “A Full-wave Modal Analysis of Inhomogeneous Waveguide Discontinuities with Both Planar and Circular Cylindrical Boundaries”; IEEE Trans. Microwave Theory and Techniques 2001, 49, 1132-1136.##
[31]     Yeo, T. “Cutoff Frequencies of an Asymmetrically Loaded Cylindrical Waveguide”; IEEE Trans. Microwave Theory and Techniques 1998, 46, 1331-1334.##
[32]     Roumeliotis, J. A.; Savaidis, S. P. “Cutoff Frequencies of Eccentric Circular-elliptic Metallic Waveguides”; IEEE Trans. Microwave Theory and Techniques 1994, 42, 2128-2138.##
[33]     Sebak, A. “Electromagnetic Scattering by Two Parallel dielectric elliptic cylinders”; IEEE Trans. Antennas and Propag. 1994, 42, 1521-1527.##
[34]     Balanis, C. A. “Advanced Engineering Electromagnetics”; John Wiley & Sons, Inc. 2012.##
Volume 11, Issue 3 - Serial Number 41
November 2020
Pages 263-273
  • Receive Date: 28 April 2019
  • Revise Date: 15 May 2019
  • Accept Date: 28 June 2020
  • Publish Date: 22 September 2020