[1] Mosavi, M. R.; Khishe M.; Ebrahimi, E. “Classification of Sonar Targets using OMKC, Genetic Algorithm and Statistical Moments”; J. Adv. Comput. Res. 2016, 7, 143-156.##
[2] Fialkowski, J. M.; Gauss, R. C. “Methods for Identifying and Controlling Sonar Clutter”; IEEE J. Ocean Eng. 2010, 35, 330–354.##
[3] Mosavi, M. R.; Khishe, M.; Aghababaee, M.; Mohammadzadeh, F. “Approximation of Active Sonar Clutter's Statistical Parameters Using Array's Effective Beam-Width”; Iranian J. Marine Sci. Technol. 2015, 73, 11-22.##
[4] Khishe, M.; Aghababaee, M. “Identifying and Controlling Sonar Clutter by Clutter Indelible Method”; Iranian Conf. Elec. Comput. Eng. 2013, 523-529.##
[5] Mosavi, M. R.; Khishe, M.; Hatam Khani, Y.; Shabani, M. “Training Radial Basis Function Neural Network using Stochastic Fractal Search Algorithm to Classify Sonar Dataset”; Iranian J. Elec. Elec. Eng. 2017, 13, 100-112.##
[6] Mosavi, M. R.; Kaveh, M.; Khishe, M. “Sonar Data Set Classification using MLP Neural Network Trained by Non-linear Migration Rates BBO”; Fourth Iranian Conf. Eng. Electro. 2016, 1-5.##
[7] Mosavi, M. R.; Kaveh, M.; Khishe, M.; Aghababaee, M. “Design and implementation a Sonar Data Set Classifier by using MLP NN Trained by Improved Biogeography-based Optimization”; Second National Conf. Marine Technol. MMT2016.##
[8] Auer, P.; Burgsteiner, H.; Maass, W. “A Learning Rule for Very Simple Universal Approximators Consisting of a Single Layer of Perceptrons”; Neural Networks 2008, 21, 786-795.##
[9] Moody, J.; Darken, C. J. “Fast Learning in Networks of Locally-Tuned Processing Units”; Neural Comput. 1989, 1281-294.##
[10] Karayiannis, N. “Reformulated Radial Basis Neural Networks Trained by Gradient Descent”; IEEE Trans. Neural Networks 1999, 10, 657-671.##
[11] Liu, C.; Wang, H.; Yao, P. “On Terrain-Aided Navigation for Unmanned Aerial Vehicle using B-spline Neural Network and Extended Kalman Filter”; IEEE Conf. Guidance, Nav. Control 2014, 2258- 2263.##
[12] Simon, D. “Training Radial Basis Neural Networks with the Extended Kalman Filter”; Neurocomputing 2002, 48, 455-475.##
[13] Zhang, Q.; Li, B. “A Low-Cost GPS/INS Integration Based on UKF and BP Neural Network”; IEEE Conf. Intel. Control and Inf. Proc. 2014, 100-107.##
[14] Mosavi, M. R.; Khishe, M.; Akbarisani, M. “Neural Network Trained by Biogeography-based Optimizer with Chaos for Sonar Data Set Classification”; Wireless Person. Comput. 2017, 95, 1-20.##
[15] Li, X.; Zhang, T.; Deng, Z.; Wang, J. “A Recognition Method of Plate Shape Defect Based on RBF-BP Neural Network Optimized by Genetic Algorithm”; IEEE Conf. on Control and Decision 2014, 3992-3996.##
[16] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P. “Optimization by Simulated Annealing”; Science, New Series, 1983, 220, 671-680.##
[17] Ozturk, C.; Karaboga, D. “Hybrid Artificial Bee Colony Algorithm for Neural Network Training”; IEEE Congress Evol. Comput. 2011, 84-88.##
[18] Yu, J. J.; Lam, A. Y.; Li, V. O. “Evolutionary Artificial Neural Network based on Chemical Reaction Optimization”; IEEE Congress Evol. Comput. 2011, 2083-2090.##
[19] Mirjalili, S.; Sadiq, A. S. “Magnetic Optimization Algorithm for Training Multi-Layer Perceptron”; IEEE Conf. Comm. Soft. Networks 2011, 42-46.##
[20] Green, R. C.; Wang, L.; Alam, M. “Training Neural Networks Using Central Force Optimization and Particle Swarm Optimization: Insights and Comparisons”; Expert Sys. App. 2012, 39, 555-563.##
[21] Moallem, P.; Razmjooy, N. “A Multi-Layer Perceptron Neural Network Trained by Invasive Weed Optimization for Potato Color Image Segmentation”; Trend. Appl. Sci. Res. 2012, 7, 445-455.##
[22] Pereira, L. A.; Afonso, L. C.; Papa, J. P.; Vale, Z. A.; Ramos, C. C.; Gastaldello, D. S.; Souza, A. N. “Multilayer Perceptron Neural Networks Training Through Charged System Search and Its Application for Non-Technical Losses Detection on Innovative Smart Grid Technologies”; IEEE PES Conf. Latin America 2013, 1-6, 2013.##
[23] Pereira, L.; Rodrigues, D.; Ribeiro, P.; Papa, J.; Weber, S. A. “Social-Spider Optimization-Based Artificial Neural Networks Training and its Applications for Parkinson’s Disease Identification”; IEEE Symp. Comput. Sys. 2014, 14-17.##
[24] Uzlu, E.; Kankal, M.; Akpınar, A.; Dede, T. “Estimates of Energy Consumption in Turkey using Neural Networks with the Teaching-Learning-based Optimization Algorithm”; Energy 2014, 75, 295-303.##
[25] Mosavi, M. R.; Khishe, M.; Ghamgosar, A. “Classification of Sonar Data Set using Neural Network Trained by Gray Wolf Optimization”; J. Neural Network World 2016, 26, 393-415.##
[26] Mosavi, M. R.; Khishe, M.; “Training a Feed-Forward Neural Network using Particle Swarm Optimizer with Autonomous Groups for Sonar Target Classification”; J. Circuits, Sys. Comput. 2017, 26, 1-20.##
[27] Ravakhah, S.; Khishe, M.; Aghababaee, M.; Hashemzadeh, E. “Sonar False Alarm Rate Suppression using Classification Methods Based on Interior Search Algorithm”; Int. J. Comput. Sci. Network Security 2017, 17.##
[29] Kaveh, M.; Khishe, M.; Mosavi, M. R. “Design and Implementation of a Neighborhood Search BBO Trainer for Classifying Sonar Data Set using Multi-Layer Perceptron Neural Network”; Analog Int. Circuits Signal Proc. 2018.##
[30] Khishe, M.; Safari, A. “Classification of Sonar Targets using an MLP Neural Network Trained by Dragonfly Algorithm”; Wireless Person. Sys. 2019, 108, 2241-2260.##
[31] Afrakhteh, S.; Mosavi, M. R.; Khishe, M.; Ayatollahi A. “Accurate Classification of EEG Signals using Neural Networks Trained by Hybrid Population-Physic-Based Algorithm”; Int. J. Auto. Comput. 2018, 1-15.##
[32] Mosavi, M. R.; Khishe, M.; Parvizi, G. R.; Naseri, M. J.; Ayat, M. “Training Multi-Layer Perceptron Utilizing Adaptive Best-mass Gravitational Search Algorithm to Classify Sonar Dataset”; Archive Acoust. 2019, 44, 137–151.##
[33] Khishe, M.; Mohammadi, H. “Sonar Target Classification using Multi-Layer Perceptron Trained by Salp Swarm Algorithm”; Ocean Eng. 2019, 181, 98-108.##
[34] Wolpert, D. H.; Macready, W. G. “No Free Lunch Theorems for Optimization”; IEEE Trans. Evol. Comput. 1997, 1, 67-82.##
[35] Khishe, M.; Mosavi, M. R.; Moridi, A. “Chaotic Fractal Walk Trainer for Sonar Data Set Classification using Multi-Layer Perceptron Neural Network and its Hardware Implementation”; Appl. Acoustics 2018, 137, 121-139.##
[36] http://archive.ics.uci.edu/ml/datasets.##
[37] Gorman R. P.; Sejnowski, T. J. “Analysis of Hidden Units in a Layered Network Trained to Classify Sonar Targets”; Neural Networks, 1988, 1, 75-89.##
[40] Gaggero, S.; Savio, L.; Brizzolara, S.; Viviani, M.; Ferrando, M.; Conti, F. “An Experimental Study on Measuring and Localizing Propeller Noise behind a Body in a Cavitation Tunnel”; First Int. Symp. Marine Propulsors, Trondheim, 2009.##
[41] Carlton, J. “Marine Propeller and Propulsion”; Section 10, Butterworth-Heinemann, 3rd Edition, 2012.##
[42] Gacs, P.; Lovasz, L. “Complexity of Algorithms”; Lecture Notes, Boston University, 1999, 185-198.##
[43] Iyer, K. “Computational Complexity of Data Mining Algorithms used in Fraud Detection”; M.Sc. Thesis, Pennsylvania State University, 2015.##