Design and Simulation a Microwave Absorbtion Coating Structure to Reduce RCS Using the PSO Method

Document Type : Original Article

Authors

1 Department Of Electrical Engineering, Shahid Sattary Aeronautical University and Technology,Tehran, Iran

2 Department of Electrical Engineering, Shahid Sattary Aeronautical University of Science and Technology,Tehran, Iran

Abstract

Absorbents are used in RCS reduction to prevent reflection of the wave and not interfere with the test wave.By reducing the amount of reflection in a wave using materials used in adsorbents, they reduce the reflection.The things that are to be considered in relation to these reflections are the effects of these waves, which are termed ”pure environmental reflections“, the error caused by not considering the pure reflections of the environment and other problems caused by weaknesses. The main wave of the note is noteworthy. In this research, the optimum thickness of adsorbent material has been determined using genetic and Particle Swarm Optimization (PSO) algorithms with the aim of determining the minimum amount of electromagnetic wave reflection. The genetic algorithm is used to adjust the plate resistance values as well as the PSO algorithm to determine the optimal screen thickness. The results show that determination of microwave absorption coating parameters has a significant effect on the absorption rate of the wave. The applied method provides the conditions for achieving optimal coverage.

Keywords


[1]      Bozorgmehr, M.; Davoodi, A.; Khakbaz, M. R. “Investigation of X Frequency Microwave Absorbance of Ferrite Nano-Composite in Polyurethane Matrix”; Adv. Defence Sci. Technol. 2016, 7, 1-8 (In Persian).##
[2]      Wang, G.; Gao, Z.; Wan, G.; Lin, S.; Yang, P.; Qin, Y. “High Densities of Magnetic Nanoparticles Supported on Graphene Fabricated by Atomic Layer Deposition and Their Use as Efficient Synergistic Microwave Absorbers”; Nano Res. 2014, 7, 704-716.##
[3]      Salisbury, W. W. “Absorbent Body for Electromagnetic Waves”; Google Patents, 1952.##
[4]      Fante, R. L.; Mccormack, M. T. “Reflection Properties of the Salisbury Screen”; IEEE Trans. Antennas Propag. 1988, 36, 10, 1443-1454.##
[5]      Engheta, N. “Thin Absorbing Screens Using Metamaterial Surfaces”; IEEE Int. Symp. Antennas Propag. 2002, 124-137.##
[6]      Azarbar, A.; Mashhadi, M. “RCS Reduction Using Artificial Magnetic Conductor”; Iran. Electron. Ind. Mag. 2016, 7, 3.##
[7]      Paquay, M.; Iriarte, J.C.; Ederra, I.; Gonzalo, R.; de Maagt, P. “Thin AMC Structure for Radar Cross-Section Reduction”; IEEE Trans. Antennas Propag. 2007, 55, 3630-3638.##
[8]      Luukkonen, O.; Costa, F.; Simovski, C. R.; Monorchio, A.; Tretyakov, V. “A Thin Electromagnetic Absorber for Wide Incidence Angles and Both Polarizations”; IEEE Trans. Antennas Propag. 2009, 57, 3119-3125.##
[9]      Michielssen, E.; Sajer, J. M.; Ranjithan, S.; Mittra, R. “Design of Lightweight, Broad-Band Microwave Absorbers Using Genetic Algorithms”; IEEE Trans. Microw. Theory 1993, 41, 1024-1031.##
[10]   Weile, D. S.; Michielssen, E.; Goldberg, D. E. “Genetic Algorithm Design of Pareto Optimal Broadband Microwave Absorbers”; IEEE Trans. Electromagn. C. 1996, 38, 3, 518-525.##
[11]   Lee, J.; Yoo, M.; Lim, S. “A Study of Ultra-Thin Single Layer Frequency Selective Surface Microwave Absorbers with Three Different Bandwidths Using Double Resonance”; IEEE Trans. Antennas Propag. 2015, 63, 221-230.##
[12]   Li, Z.; Li, X.; Zong, Y.; Tan, G.; Sun, Y.; Lan, Y.; Zheng, X. “Solvothermal Synthesis of Nitrogen-Doped Graphene Decorated by Superparamagnetic Fe3O4 Nanoparticles and Their Applications as Enhanced Synergistic Microwave Absorbers”; Carbon 2017, 115, 493-502.##
[13]   Cui, S.; Weile, D. S.; Volakis, J. L. “Novel Planar Electromagnetic Absorber Designs Using Genetic Algorithms”; IEEE Trans. Antennas Propag. 2006, 54, 1811-1817.##
[14]   Chamaani, S.; Mirtaheri, S. A.; Shooredeli, M. A. “Design of Very Thin Wide Band Absorbers Using Modified Local Best Particle Swarm Optimization”; AEU-Int. J. Electron C. 2008, 62, 549-556.##
[15]   Kent, S.; Kartal, M. “Genetic Algorithm Approach on Pyramidal Dielectric Absorbers”; Int. J. Rf. Microw. C. E. 2008, 18, 286-294.##
[16]   Goudos, S. K. “Design of Microwave Broadband Absorbers Using a Self‐Adaptive Differential Evolution Algorithm”; Int. J. Rf Microw. C. E. 20019, 19, 364-372##
[17]   Chew, W. C. “Waves and Fields in Inhomogeneous Media”; IEEE Press. 1995.##
[18]   Dib, N.; Asi, M.; Sabbah, A. “Optimal Design Of Multilayer Microwave Absorbers”; Prog. Electromagn. Res. C. 2010, 13, 171-185##
[19]   Cheraghi, A.; Malekfar, R.; Bellah, S. M.; Parishani, M. “ISO-MANM: An Imitation Based Optimization Tool for Multilayer Microwave Absorbers”; J. Mol. Graph. Model. 2017, 72, 16-24.##
[20]   Ranjan, P.; Choubey, A.; Mahto, S. K. “A Novel Approach for Optimal Design of Multilayer Wideband Microwave Absorber Using Wind Driven Optimization Technique”; AEU-Int. J. Electron. C. 2018, 83, 81-87.##
[21]   Krusienski, D. J.; Jenkins, W. K. “Design and Performance of Adaptive Systems Based on Structured Stochastic Optimization Strategies”; IEEE Circ. Syst. Mag. 2015, 5, 8-20.##