[1] Cumming, I. G.; Wong, F. H. "Digital Processing of Synthetic Aperture Radar Data”; Artech House: London, 2005.
[2] Brown, J.; Anwar, M.; Dozier, G. “An Evolutionary General Regression Neural Network Classifier for Intrusion Detection”; Proc. 25th Int. Conf. Comput. Commun. and Network, Waikoloa, USA, 2016.
[3] Stolfo, S. J.; Fan, W.; Lee, W.; Prodromidis, A.; Chan, P. K. “Cost-Based Modeling for Fraud and Intrusion Detection: Results from the JAM Project”; Proc. Int. DARPA Information Survivability Conference and Exposition2000, 2, 1130.
[4] Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A. “A Detailed Analysis of the KDD CUP 99 Data Set”; Second IEEE Symposium on Computational Intelligence for Security and Defense Applications, 2009.
[5] Kaushik, S. S.; Deshmukh, P. R. “Detection of Attacks in an Intrusion Detection System”; Int. J. Comput. Sci. Information Technol.2011, 2982-986.
[6] McHugh, J. “Testing Intrusion Detection Systems: A Critique of the 1998 and 1999 Darpa Intrusion Detection System Evaluations as Performed by Lincoln Laboratory”; ACM Trans. Inform. Syst. Secur. 2000, 3, 262-294.
[7] Okafor, A. “Entropy Based Techniques with Applications in Data Mining”; Dissertation, University of Florida, 2005.
[8] Lin, L.; Zuo, R.; Yang, S.; Zhang, Z. “SVM Ensemble for Anomaly Detection Based on Rotation Forest”; IEEE 3th Int. Conf. Intelligent Control and Information Processing,2012.
[9] Malik, A.; Shahzad, W.; Khan, F. “Binary PSO and Random Forests Algorithm for Probe Attacks Detection in a Network”; IEEECongress on Evolutionary Computation2011, 662-668.
[10] Bukhtoyarov, V.; Zhukov, V. “Ensemble-Distributed Approach in Classification Problem Solution for Intrusion Detection Systems”; Proc. Int. Conf. Intelligent Data Engineering and Automated Learning 2014, 255-265.
[11] Bahri, E.; Harbi, N.; Huu, H. “Approach Based Ensemble Methods for Better and Faster Intrusion Detection“; Comput. Intell. Secur. Inform. Syst. 2011, 17-24.
[12] Pervez, M.; Farid, D. “Feature Selection and Intrusion Classification in NSL-KDD Cup 99 Dataset Employing SVMS”; 8th Int. Conf. Software, Knowledge Information Management and Applications 2014, 1-6.
[13] Najafi, M.; Rafeh, R. “A New Light Weight Intrusion Detection Algorithm for Computer Networks”; Adv. Defence Sci. Technol. 2017, 10, 191-200.
[14] Mitchell, T. M. “Machine Learning”; Mc-Graw-Hill Companies, Inc. ISBN 0070428077, 1997.
[15] Stein, G.; Chen, B.; Wu, A.; Hua, K. “Decision Tree Classifier for Network Intrusion Detection with GA-Based Feature Selection”; Proceedings of the 43rd annual Southeast regional conference 2005, 2, 136-141.