Field Study the In-Plain Behavior of the Brick Wall under Subsurface Explosion

Document Type : -

Authors

Razi University

Abstract

Nowadays, design of buildings against shock loads caused by explosion has attracted special attention, due to an increase in terrorist attacks. Thus, introducing the nature of explosion and its loads are regarded as the first step in achieving this goal. Blast is an abrupt release of big amounts of energy in which light, heat, sound, shock wave, and dense air are produced. The present study aims to examine the nonlinear dynamic response of a masonry wall including two openings by the underground explosion that employedto produce earthquake -like waves. In this study, Dynamic analysis is conducted through ANSYS software. Menetrey-Willam and Drucker-Prager are used to model the structure and soil, respectively. Finally, the results of analyzing numerical model based on finite element method were compared with the field data. The outcomes demonstratedthat there is good agreement between numerical results and field data.

 

Keywords


[1] Sielicki, P. W. “Masonry Failure Under Unusual Impulse Loading”; Wydawnictwo Politechniki PoznaĹ, Skiej, 2013.
[2] Wu, C.; Hao, H.; Lu, Y. ”Dynamic Response and Damage Analysis of Masonry Structures and Masonry Infilled RC Frames to Blast Ground Motion”; Eng. Struct. 2005, 27, 323-333.
[3] Wei, X.; Stewart, M. G. ”Model Validation and Parametric Study on the Blast Response of Unreinforced Brick Masonry Walls”; Int. J. Impact. Eng. 2010, 37, 1150-1159.
[4] Meyer, M. C. S. ”Development of Brick and Mortar Material Parameters for Numerical Simulations”; Proc. Soc. Exp. Mech. 2011, 1, 351-359.
[5] Gebbeken, N.; Linse, T.; Araújo, T. ”Masonry Under Dynamic Actions - Experimental Investigations, Material Modeling and Numerical Simulations”; Advances in Protective Structures Research, Taylor & Francis Group, 2012.
[6] Chen, L.; Fang, Q.; Hao, H.; Hong, J. ”Calibration and Discussion of Parameters of Mat_72Rel3 Constitutive Model on Clay Brick and Mortar Materials”; Proc. of 15th Int. Sym. on the Interaction of the Effects of Munitions with Structures, 2013.
[7] Chen, L.; Fang, Q.; Fan, J.; Zhang, Y.; Hao, H.; Lio, J. ”Responses of Masonry Infill Walls Retrofitted With CFRP, Steel Wire Mesh and Laminated Bars to Blast Loadings”; Adv. Struct. Eng. 2014, 17, 817-836.
[8] Ma, G.; Hao, H.; Lu, Y. ”Homogenization of Masonry Using Numerical Simulations”; J. Eng. Mech.  2001, 127, 421-431.
[9] Wu, C.; Hao, H. ”Derivation of 3D Masonry Properties Using Numerical Homogenization Technique”; Int. J. Numer. Method. Eng. 2006, 66, 1717-1737.
[10] Milani, G.; Lourenço, P. B.; Tralli, A. ”Homogenized Rigid-Plastic Model for Masonry Walls Subjected to Impact”; Int. J. Solids Struc. 2009, 46, 4133-4149.
[11] Wei, X.; Hao, H. ”Numerical Derivation of Homogenized Dynamic Masonry Material Properties with Strain Rate Effects”; Int. J. Imp. Eng. 2009, 36, 522-536.
[12] Lourenço, P. B.; Hashemi, S.; Pereira, J. M. ”A Constitutive Three-Dimensional Interface Model for Masonry Walls Subjected to High Strain Rates”; 12th Int. Conf. Com. Struct. Tech. Cst. 2014, 1-15.
[13] Rafsanjani, S. H.; Lourenço, P. B.; Peixinho, N. “Analysis of Masonry Walls Subjected to High Strain Rate Out-of-Plane loads with a Rate Dependent Interface Model”; 9th Int. Mas. Conf. 2014.
[14] Rafsanjani, S. H.; Lourenço, P. B.; Peixinho, N. ”Dynamic Interface Model for Masonry Walls Subjected to High Strain Rate Out-of-Plane Loads”; Int. J. Imp. Eng. 2015, 76, 28-37.
[15] Formica, G.; Sansalone, V.; Casciaro, R. ”A Mixed Solution Strategy for the Nonlinear Analysis of Brick Masonry Walls”; Comput. Methods Appl. Mech. Eng. 2002, 191, 5847-5876.
[16] Hamed, E.; Rabinovitch, O. ”Nonlinear Dynamic Behavior of Unreinforced Masonry Walls Subjected to Out-of-Plane Loads”; J. Struct. Eng. 2008, 134, 1743-1753.
[17] Macorini, L.; Izzuddin, B. ”Nonlinear Analysis of Unreinforced Masonry Walls under Blast Loading Using Mesoscale Partitioned Modeling”; J. Struct. Eng. 2014, 140, A4014002.
[18] Wei, X. Y.; Huang, T.; Li, N. “Numerical Derivation of Pressure-Impulse Diagrams for Unreinforced Brick Masonry Walls”; Adv. Mater. Res. 2012, 1435-1439.
[19] Ahmad, S.; Elahi, A.; Pervaiz, H.; Rahman, A.; Barbhuiya, S. ”Experimental Study of Masonry Wall Exposed to Blast Loading”; Mater. Construcc. 2014, 64, 007.
 [20] Keys, R.; Clubley, S. K. ”Modelling Debris Distribution of Masonry Panels Subject to Blast Loads Using Experimental &Applied Element Methods”; 15th Int. Sym. Interaction Effects Munition, 2013. 
[21] Varma, R.; Tomar, C. P. S.; Parkash, S.; Sethi, V. S. ”Damage to Brick Masonry Panel Walls Under High Explosive Detonations”; Session, Structures under extreme loading conditions ASME-Publications-PVP, 1996, 351, 207-216.
[22] Eamon, C. D.; Baylot, J. T.; O’Daniel, J. L. ”Modeling Concrete Masonry Walls Subjected to Explosive Loads”; J. Eng. Mech. 2004, 130, 1098-1106.
[23] Hao, H.; Ma, G. ”Numerical Simulation of Underground Explosions and their Effects on Surface Structures”; Technical Report, 1997.
[24] Riedel, W.; Fischer, K.; Kranzer, C.; Erskine, J.; Cleave, R.; Hadden, D.; Romani, M. ”Modeling and Validation of a Wall-Window Retrofit System Under Blast Loading”; Eng. Struct. 2012, 37, 235-245.
[25] Akhaveissy, A.; Desai, C.; Sadrnejad, S.; Shakib, H. ”Implementation and Comparison of a Generalized Plasticity and Disturbed State Concept for the Load-Deformation Behavior of Foundations”; Sci. Iran. Trans. A. 2009, 16, 189-198.
[26] Akhaveissy, A. ”Evaluation of Tunnel-Structure Interaction due to Strong ground movement”; Ph. D. Thesis, Civil Engineering Department, Tarbiat Modares University, Tehran, Iran, 2007.
[27] Akhaveissy, A. “Analysis of Tunnel and Super Structures for Excavation”; Sci. Iran. 2011,18, 1-8.
[28] Cooper, P. W. ”Explosives Engineering”; VCH Pub, 1996.
[29] Jayasinghe, L. B.; Thambiratnam, D.; Perera, N.; Jayasooriya, J. ”Blast Response and Failure Analysis of Pile Foundations Subjected to Surface Explosion”; Eng. Fail. Anal. 2014, 39, 41-54.
[30] Saleh, M.; Edwards, L. ”Evaluation of Soil and Fluid Structure Interaction in Blast Modelling of the Flying Plate Test”; Comput. Struct. 2015, 151, 96-114.
[31] Neuberger, A.; Peles, S.; Rittel, D. ”Scaling the Response of Circular Plates Subjected to Large and Close-Range Spherical Explosions. Part II, Buried Charges”; Int. J. Imp. Eng. 2007, 34, 874-882.
[32] Tian, L.; Li, Z. X. ”Dynamic Response Analysis of a Building Structure Subjected to Ground Shock From a Tunnel Explosion”; Int. J. Imp. Eng. 2008, 35, 1164-1178.
[33] Fox, D.; Huang, X.; Jung, D.; Fourney, W.; Leiste, U.; Lee, J. ”The Response of Rmall Rcale Rigid Targets to Shallow Buried Explosive Detonations”; Int. J. Imp. Eng. 2011, 38, 882-891.
[34] Balsara, J. P. ”Blast Loaded Buried Arches”; J. Eng. Mech. 1970, 96, 1-16.
[35] Gui, M.; Chien, M. ”Blast-Resistant Analysis for a Tunnel Passing Beneath Taipei Shongsan Airport – A Parametric Study”; Geot. Geol. Eng. 2006, 24, 227-248.
[36] TM 5-1300, Navy NAVFAC P-397, Air Force AFR 88-22 ”Structures to Resist the Effects of Accidental Explosions”; 1990.
[37] Soheyli, M. R.; Akhaveissy, A.; Mirhosseini, S. ”Large-Scale Experimental and Numerical Study of Blast Acceleration Created by Close-In Buried Explosion on Underground Tunnel Lining”; Shock Vib. 2016, 9 Pages.
[38] Hyde, D. “User’s Guide for Microcomputer Program CONWEP, Application of TM5-855-1, Fundamentals of Protective Design for Conventional Weapons”; Instructional Rep. No. SL-88, 1992, 1.