Synthesis of Carbon Nanotube/Iron-Nickel Nanocomposite by Reduction in Solution Method as Radar Absorbing Nanostracture

Authors

Abstract

In this study, the nanocomposite of carbon nanotube/iron-nickel was synthesized. Phase studies and morphology of the synthesized sample were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Also, the electromagnetic parameters of the synthesized samples were evaluated using analytical network vector (VNA) in the X-band radar range. In iron-nickel nanoalloy the bandwidth of RL<-10 dB, is approximately 2.5 GHz and the bandwidth of RL<-20 dB is 11.3-11.9 GHz. However, for carbon nanotube/iron-nickel nanocomposite, the bandwidth of RL<-10 dB (90% absorption of incident waves) comprises the entire frequency range, and maximum effective absorption bandwidth (RL<-20 dB) (99% absorption of incident waves) is approximately equal to 3GHZ. The minimum reflection loss was increased from -38.14 dB in the thickness of 2.8 mm at a frequency of 11.6 GHz for nickel-nickel nano-alloy to -43.36 dB in carbon nanotube / iron-nickel nancomposite in a thickness of 2.2 mm at a frequency of 9.9 GHz. Therefore, this nanostracture due to the hybrid of two compounds of dielectric component (carbon nanotube) and magnetic component (iron-nickel nanoalloy) is considered to be the preferred option for radar absorption.

Keywords


  • Receive Date: 30 January 2019
  • Revise Date: 22 November 2024
  • Accept Date: 30 January 2019
  • Publish Date: 30 January 2019