Investigation of X Frequency Microwave Absorbance of Ferrite Nano-Composite in Polyurethane Matrix

Abstract

In modern battlefield, Radar has emerged as an important sensor to detect and target the military equipment of enemy. The camouflage against radar sensor is mainly achieved through the use of radar absorbing materials (RAM). These materials absorb most of the radar incident energy, thereby reducing the reflected signal to minima, and thus locking the capability of radar detection. In this study, the ability of different nanocomposites were examined to measure the reflection loss. Polyaniline, iron oxide and titanium oxide nanocomposite on Polyurethane substrate was successfully tested and absorbed good amount of radar waves. In order to optimize the reflected loss (the amount of absorbance), the effect of parameters such as thickness and concentration of nanocomposite were considered. The results indicated that the maximum loss in range of 8-12 GHz for a thickness of nanocomposite as 7.5 mm, is about 22.5 dB at 9.7 GHz .

Keywords


[1]       Bing, T.; Liangjun, Y.; Taihong, S.; Linfeng, Y.; Youchun, Z. “Preparation of Nano-Sized Magnetic Particles from Spent Pickling Liquors by Ultrasonic-Assisted Chemical Co-Precipitation”; J. Hazard. Mater. 2009, 163, 1173–1178.##
[2]       Huo, J.; Wang, L.; Haojie, Y. “Polymeric Nanocomposites for Electromagnetic Wave Absorption”; J. Mater. Sci. 2009, 44, 3917–3927.##
[3]       Zhongzhu, W.; Hong, B.; Jian, L. “Magnetic and Microwave Absorbing Properties of Polyaniline/Fe2O4 Nanocomposite”; J. Magn. Magn. Mater. 2008, 320, 2132 - 2139.##
[4]       Petrov, V. M.; Gagulin,V. V. “Microwave Absorbing Material”; Inorg. Mater. 2001, 37, 93-98.##
[5]       Sook, W. P.; Masato, T.; Jiro, W.; Noriyuki, K. “Microwave Absorption Behaviors of Polyaniline Nanocomposites Containing TiO2 Nanoparticles”; Current Applied Physics. 2008, 8, 391–394.##
[6]       Yuzun, F.; Haibin, Y.; Minghui, L. ; Guangtian, Z. “Evaluation of the Microwave Absorption Property of Flake Graphite”; Mater. Chem. Phys. 2009, 115, 696–698.##
[7]       Kimura, S.; Kato, T.; Hyodo, T. “Electromagnetic Wave Absorption Properties of Carbonyl Iron-Ferrite/PMMA Composites Fabricated by Hybridization Method”; J. Magn. Magn. Mater. 2007, 312, 181–186.##
[8]       Truong, V. T.; Riddell, R. F. “Polypyrrole Based Microwave Absorbers”; J. Mater. Sci. 1998, 33, 4971–4976.##
[9]       Emerson, W. H. “Electromagnetic Wave Absorbers and Anechoic Chambers Through the Years”; IEEE Trans. Antennas Propag. 1973, 21, 484-487.##
[10]    Kasevich, R. S.; Broderick, F. “Broadband Electromagnetic Energy Absorber”; US Patent 5, 223, 849, 1993.##
[11]    Cory, H.; Shiran, S.; Heilper, M. “An Iterative Method for Calculating the Shielding Effectiveness and Light Transmittance of Multilayered Media”; IEEE Trans. Electromag. Compat. 1993, 35, 451-456.##
[12]    Chakravarty, S.; Mittra, R.; Williams, N. R. “Microwave Theory and Techniques”; IEEE Trans. Antennas Propag. 2001, 49, 1050-1056.##
[13]    Wei, J.; Liu, J.; Li, S. “Electromagnetic and Microwave Absorption Properties of Fe3O4 Magnetic Films Plated on Hollow Glass Spheres”; J. Magn. Magn. Mater. 2007, 312, 414- 417.##
[14]    Gaylor, K. “Radar Absorbing Materials Mechanisms and Materials”; DSTO Materials Research Laboratory, 1989.##
[15]    Jaggard, D. L.; Engheta, N. “Chirosorb TM as an Invisible Medium”; Elect. Lett. 1989, 25, 173-174.##
[16]    Jun, Z.; Jincheng, X.; Peng, T.; Wei, H. “Ferromagnetic and Microwave Absorption Properties of Copper Oxide-Carbon Fiber Composites”; J. Alloy Comp. 2009, 487, 304–308.##
[17]    Kalaitzidou, K.; Fukushima, H.; Drzal, L. “A New Compounding Method for Exfoliated Graphite–Polypropylene Nanocomposites with Enhanced Flexural Properties and Lower Percolation Threshold”; Combus. Sci. Technol. 2007, 67, 2045–2051.##
[18]    Wei, J.; Liu, J.; Li, S. “Electromagnetic and Microwave Absorption Properties of Fe3O4 Magnetic Films Plated on Hollow Glass Spheres”; J. Magn. Magn. Mater. 2007, 312, 414-417.##
[19]    Chen, Y. J.; Gao, P.; Zhu, C. L.; Wang, R. X.; Wang, L. “Synthesis, Magnetic and Electromagnetic Wave Absorption Properties of  Porous Fe3O4/Fe/SiO2 Core/Shell Nanorods”; J.  Appl. Phys. 2009, 106, 054303-4.##
[20]    Hosseini, H.; Mohseni, S.; Asadnia, A.; Kerdari, H. “Synthesis and Microwave Absorbing Properties of Polyaniline/4 Nanocomposite”; J .Alloy Compd. 2011, 509, 4682–4687.##
[21]    Choi, I.; Lee, D.; Lee D. G. “Hybrid Composite Low-Observable Radome Composed of E-glass/Aramid/Epoxy Composite Sandwich Construction and Frequency Selective Surface”; Compos. Struct. 2014, 117, 98–104.##
[22]    Choi, I.; Lee, D.; Lee, D. “Optimum Design Method of a Nano-composite Radar Absorbing Structure Considering Dielectric Properties in the X-band Frequency Range”; Compos. Struct.  2015, 119, 218–226.##
[23]    Xingwei, L.; Gengchao, W.; Xiaoxuan, L.; Dongming, L. “Surface Properties of Polyaniline/Nano- TiO2 Composites”; Appl. Surf. Sci. 2004, 229, 395-401.##
[24]    Xiaoling, Y.; Gang, L.; Duanming, Z.; Huahui, H. “An Optimizing Method for Design of Microwave Absorbing Materials”; Mater. Design. 2006, 27, 700–705.##
[25]    Bueno, A. R.; Gregori, M. L.; Maria, C. S. “Microwave-absorbing Properties of Ni0.5 xZn0.5-xMe2xFe2O4 (Me=Cu, Mn, Mg) Ferrite Wax Composite in X-band Frequencies”; J. Magn. Magn. Mater. 2007, 320, 864-870.##